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AGENDA

* History of deep learning.

* A sample of existing theory for deep learning.

* Neural networks with random Gaussian weights.
* Generalization error of deep neural networks.

* Deep Learning as metric learning.

* Solving minimization problems with deep learning.



FIRST LEARNING PROGRAM

“field of study that gives computers the ability to learn
without being explicitly programmed”. [Arthur Samuel, 1959]
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HUMAN VISUAL SYSTEM

In the visual cortex there

are two types of neurons:
Simple and complex Complex Cells
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IMITATING THE HUMAN BRAIN
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CONVOLUTIONAL NEURAL NETWORKS

* Introduction of convolutional neural networks

* Training by backpropagation



SCENE PARSING

* Deep Learning usage before 2012:

superpixels tree T,{Ck}



2012 IMAGENET DEEP LEARNING
BREAKTHROUGH

Imagenet dataset

1.4 Million images

1000 categories

1.2 Million for training
150000 for testing
* 50000 for validation

SFT+ PG| — | —

9.0% | 166%

Today deep learning achieves 3.5% by 152 layers



DEEP NETWORK STRUCTURE

* What each layer of the network learns?
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LAYERS STRUCTURE

* First layers detect simple patterns that
corresponds to simple objects
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[Zeiler & Fergus 2014
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LAYERS STRUCTURE

* Deeper layers detects more complex patterns
corresponding to more complex objects.

[Zeiler & Fergus, 2014]
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LAYERS STRUCTURE
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Layer 4 |
[Zeiler & Fergus, 2014]




WHY THINGS WORK BETTER TODAY?

More data
Better Hardware (GPU)

Better learning regularization (dropout)

Deep learning impact and success is hot unique
only to image classification.
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DEEP LEARNING FOR SPEECH RECOGNITION

According to Microsoft’s
speech group:

Using DL
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[Szegedy et al., 2015]

OBJECT DETECTION

16






GO GAME

* AlphaGo - First computer program to ever beat a
professional player at the game of go

* Program created by Google DeepMind

 Game strategy learned using deep learning |Silver
et al., 2016].
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DEEP NEURAL NETWORKS (DNN)

* One layer of a neural net

VX
V € R4 X Y Y(VX) e R™
X is a linear F is a non-linear
operation function

* Concatenation of the layers creates the whole net
o(x1, X2, .., X5 =y(vxHx?) .. xX)

VeRd - Xt @ Xt Y XK Y



CONVOLUTIONAL NEURAL NETWORKS (CNN)

VX
V e R X Y Y(VX) e R™
X is a linear F is a non-linear
operation function

* In many cases, X is selected to be a convolution.
* This operator is shift invariant.

* CNN are commonly used with images as they are
typically shift invariant.



THE NON-LINEAR PART

* Usuallyyp = g o f. X Y
* f is the (point-wise) activation function
RelLU Sigmoid . Hyperbolic
f(x) = max(x,0) (x) = I tangent
fe0 = 1+e* f(x) = tanh(x)

* g is a pooling or an aggregation operator.

Vi W e Ve

Max pooling Mean pooling lp pooling

1 PINTY
max l/; _z 74 zi_lvi
Nnédi=1 B

l

21



What is the role
of pooling?




REPRESENTATION POWER

* Neural nets serve as a universal approximation for any
measurable Borel functions

* In particular, let the non-linearity Y be a bounded,
non-constant continuous function, [,,, be the m-
dimensional hypercube, and C(/,,,) be the space of
continuous functions on I,,. Then for any f € C(l,,)
and € > 0, there exists m > 0, and X € R&xm
B € R™ W € R™ such that the neural network

FWV)=ypWxX)w?’
approximates f with a precision €:

IF(V) — f(V)]| <€ VV € R
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ESTIMATION ERROR

* The estimation error of a function f by a neural
networks scales as

Smoothness of /Cf Nd \ Input
approximated O kﬁ + 0 - lOg(n)) dimension
function \ n
Number of Number of
neurons in the training

BININ ENES
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DEPTH OF THE NETWORK

* DNN allow representing restricted Boltzmann
machines with a number of parameters
exponentially greater than the number of the
network parameters

* Each DNN layer with RelLU divides the space by a
hyper-plane.

* Therefore the depth of the network divides the
space into an exponential number of sets
compared to the number of parameters
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DEPTH EFFICIENCY OF CNN

* Function realized by CNN, with ReLU and max-
pooling, of polynomial size requires super-
polynomial size for being approximated by shallow
network

* Standard convolutional network design has
learning bias towards statistics of natural images
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ROLE OF POOLING

* The pooling stage provides shift invariance

* A connection is drawn between the pooling stage
and the phase retrieval methods

* This allows calculating Lipchitz constants of each
DNN layer Y (- X) and empirically recovering the
input of a layer from its output.

* However, the Lipchitz constants calculated are very
loose and no theoretical guarantees are given for
the recovery.
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SUFFICIENT STATISTIC AND INVARIANCE

 Given a certain task at hand:

* Minimal sufficient statistic guarantees that we can
replace raw data with a representation with
smallest complexity and no performance loss.

* Invariance guarantees that the statistic is constant
with respect to uninformative transformations of

the data.

* CNN are shown to have these properties for many
tasks
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SCATTERING TRANSFORMS

e Scattering Transforms - a cascade of wavelet
transform convolutions with nonlinear modulus

and averaging operators.

* Scattering coefficients are stable encodings of
geometry and texture

L .
0 I ‘Z oy A . + Original
PR , :
PN Image with d
RN NE Is

Recovery from
, V. f -7 scattering transform
with 1 layer
R Recove ry from
O | J ::::::::m: | R scattering transform
S with 2 layers

Images from slides of Joan Bruna in ICCV 2015 tutorial



SCATTERING TRANSFORMS AND DNN

* More layers create features that can be made
invariant to increasingly more complex
deformations.

* Layers in a DNN encode complex, class-specific
geometry.

* Deeper architectures are able to better capture
invariant properties of objects and scenes in
INEEES

30



SCATTERING TRANSFORMS AS A METRIC

* Scattering transforms may be used as a metric.

* Inverse problems can be solved by minimizing
distance at the scattering transform domain.

* Leads to remarkable results in super-resolution
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SCATTERING SUPER RESOLUTION

Original Best Linear Estimate State-of-the-art Scattering estimate

[Bruna, Sprechmann & Lecun, 2016]

32
Images from slides of Joan Bruna in CVPR 2016 tutorial



MINIMIZATION

* The local minima in deep networks are not far from
the global minimum.

* saddle points are the T
main problem of deep
Learning optimization.

count

b )
o 100

i

P

* Deeper networks have (Choromanska et al., 2015]
more local minima but less saddle points.
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GLOBAL OPTIMALITY

* Deep learning is a positive

factorization problem, i.e.,

Va = 0 DNN obey

N DEEP LEARNING

vy homogeneous
dp = 0 such that

d(aX?, aX?, .., aX¥) = a? (X1, X2, ..., XX).

* With proper regularization, local minima are global.

* |f the network is large enough, global minima can
be found by local descent.
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DNN may Generalization

solve error depends
optimization on the DNN
problems input margin




ASSUMPTIONS — GAUSSIAN WEIGHTS

vert - X1 PN xE SN xx (0

XL .., XY .. XK are
random Gaussian matrices

* Infusion of random weights reveals internal
properties of a system

e




ASSUMPTIONS — NO POOLING

VeRd - Xt - ¢ Xt . Y XK Y

Y is an element wise
activation function

* Pooling provides invariance

‘ Is an element wise
max(v, 0) h L
an HTﬂX(V, U) 1 + aetiwation function

»We assume that all equivalent points in the data were
merged together and omit this stage.

» Reveals the role of the other components in the DNN.
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ASSUMPTIONS — LOW DIMENSIONAL DATA

Y is a low dimensional set

38




Gaussian mean
width is a good
measure for the
complexity of
the data.




WHAT HAPPENS TO SPARSE DATA IN DNN?

* Let Y be sparsely represented data

Y
e Example: Y ={V € R3:[|[V]l, < 1} >|<

 YX is still sparsely represented data

YX
e Example: YX ={V € R3:3W € R3,V = XW, |[W]l, < 1}

* Y (YX) not sparsely represented W
e But is still low dimensional




GAUSSIAN MEAN WIDTH

e Gaussian mean width:

w(Y)=E sup (V-W,g), g~N(0I).
V,WEY

g
w

The width of
the set Y in
the direction 2

of g:

Ve



MEASURE FOR LOW DIMENSIONALITY

e Gaussian mean width:

w(Y)=FE sup (V—-W,g), g~N(,1I).
V,WeY

* w?(Y) is a measure for the dimensionality of the
data.

* Examples:




GAUSSIAN MEAN WIDTH IN DNN

Y ]Rd X is a linear

F is a non-linear ‘

operation YX ]Rm function l/)(VX) c Rm

2D imply w2(Y) ~ w? @ (VX))

_—m

W 1t is sufficient to provide proofs only for a single layer

Theorem 1: small




DNN keep
the
important
information
of the data.

BN




ASSUMPTIONS

L’_} Y(VX) e R™
i . ?

Xisa Y is an
random element wise

Gaussian activation
matrix function

Vey

1

max(v, 0) ‘ tanh(v) :
~ 1+e™*

m = 0(6 w?(Y))



ISOMETRY IN A SINGLE LAYER

VX l/)

Theorem 2: IS a in the Gromov-
Hausdorff sense between the sphere $¢~1 and the
Hamming cube [Plan & Vershynin, 2014, Giryes, Sapiro & Bronstein 2016].

* If two points belong to the same tile
then their distance

Each layer of the network keeps the
main information of the data

The rows of X create a tessellation of the space.
» This stands in line with [Montufar et. al. 2014]
» This structure can be used for hashing 46



DNN AND HASHING

* Asingle layer performs a locally sensitive hashing.

* Deep network with random weights may be
designed to do better |

* |t is possible to train DNN for hashing, which
provides cutting-edge results

47



DNN STABLE EMBEDDING

Theorem 3: There exists an algorithm A such that
w(Y)

V=A@V <O <ﬁ> = 0(5%)

» After K layers we have an error 0(1(63)
»Stands in line with
»DNN keep the important information of the data
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RECOVERY FROM DNN OUTPUT
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Gaussian
< weights are

good for
classifying the
average points
in the data.




ASSUMPTIONS

Ax—! pn e wr

I X is a Y is the RelLU

max(v,0) ‘

Gaussian
matrix

m = 0(6 *w*(Y))



DISTANCE DISTORTION

o

Theorem 4:forV,W €Y

VI [|W
! ”72 L sin 2v,w)

The smaller (V, W) the
smaller the distance we get
between the points
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ANGLE DISTORTION

o

Theorem 5:forV,IW €Y Behavior of Z(y(VX), p(WX))

1
— ; (Sin L(V, W)
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DISTANCE AND ANGLES DISTORTION

Points with small angles between them become
closer than points with larger angles between them



POOLING AND CONVOLUTIONS

* We test empirically this behavior on convolutional
neural networks (CNN) with random weights and
the MNIST, CIFAR-10 and ImageNet datasets.

* The behavior predicted in the theorems remains
also in the presence of pooling and convolutions.
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TRAINING DATA SIZE

e Stability in the network implies that close points in the
input are close also at the output

Having a good network for an &-net of the input set Y
guarantees a good network for all the pointsin Y.

Using Sudakov minoration the number of data points

is
exp(w?(Y)/&?).

Though this is not a tight bound, it introduces the

Gaussian mean width w (Y) as a measure for the

complexity of the input data and the required number

of training samples.

56



Important goal
of training:
Classify the

boundary points
between the

different classes
in the data.




ROLE OF TRAINING

* Having a theory for Gaussian weights we test the
behavior of DNN after training.

* We looked at the MINIST, CIFAR-10 and ImageNet
datasets.

* We will present here only the ImageNet results.

* We use a state-of-the-art pre-trained network for
ImageNet

* We compute inter and intra class distances.
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INTER BOUNDARY POINTS DISTANCE RATIO

V is the output of VV and Z the closest
point to I/ at the output from a
different class.

I/ is a random point and
W its closest point from
a different class.

IV-Z|
W=Vl

Compute the distance ratio:
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INTRA BOUNDARY POINTS DISTANCE RATIO

20 -0 80

|4

Z|
ass |

!
Let V be a point and W

its farthest point from
the same class.

Let I/ be the output of V and Z the
farthest point from V at the output
from the same class

IV-Z|
W=Vl

Compute the distance ratio:
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BOUNDARY DISTANCE RATIO

Inter-class Intra-class

- Fiandom
——Trained




AVERAGE POINTS DISTANCE RATIO

Class Il

Class |

V,W and Z are three V,W and Z are the outputs of V, W

random points and Z respectively.

\v-wi| |[V-Z]
\Wv-w|’ |lv-Z||

Compute the distance ratios:
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AVERAGE DISTANCE RATIO

Inter-class Intra-class

—Random —Random
——Trained ——Trained




ROLE OF TRAINING

* On average distances are preserved in the trained
and random networks.

* The difference is with respect to the boundary
points.

* The inter distances become larger.

* The intra distances shrink.

64



Generalization
error depends
on the DNN
input margin




ASSUMPTIONS

Xty Xt - ¥ Xk

Y isthe ReLU  Linear classifier —w

Input Space Feature Space




GENERALIZATION ERROR (GE)

* In training, we reduce the classification error
Ctraining Of the training data as the number of

training examples L increases.

* However, we are interested to reduce the error
Y5t Of the (unknown) testing data as L increases.

* The difference between the two is the
generalization error

GE = ftraining — Lrest
= |t is important to understand the GE of DNN
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* Dropout - randomly drop units (along with their

REGULARIZATION TECHNIQUES

Weight decay — penalizing DNN weights

connections) from the neural network during
training

DropConnect — dropout extension
Batch normalization
Stochastic gradient descent (SGD)

Path-SGD

68



A SAMPLE OF GE BOUNDS

e Using the VC dimension it can be shown that

log(L)
L

GE < 0| [DNN params -

* The GE was bounded also by the DNN weights

GE < —zKuwuz ﬂuwuzz
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A SAMPLE OF GE BOUNDS

e Using the VC dimension it can be shown that

log(L)

GE<O
B L

* The GE was bounded also by the DNN weights
1
GE < 7= Iwll; HHX‘HZZ

* Note that in both cases the GE grows with the depth

70



DNN INPUT MARGIN

* Theorem 6: If for every input margin ym(Vi) >y

then GE < \/Ny/z (Y)//m

* N, /2 (Y) is the covering number of the data Y.

* N, /»(Y) gets smaller as y gets larger.

* Class 1

* Bound is independent of depth.|§

e OQur theory relies on the
robustness framework



INPUT MARGIN BOUND

* Maximizing the input margin directly is hard

* Our strategy: relate the input margin to the output
margin yout(V‘) and other DNN properties

* Class 1

e Theorem 7: Y o,

Yin(V?) = — o)

Sup ||V||2] (V)H

Yout(V )
~ Th<i<klXtl,
> Vout(Vi).

My<i<kll X 2




OUTPUT MARGIN

* Theorem 7: yin(Vi) >

2 - 2 : * Class 1
H1si5K”Xl”2 H1si5K”Xl”F B Class 2

* Qutput margin is easier to
maximize — SVM problem

* Maximized by many cost
functions, e.g., hinge loss.




GE AND WEIGHT DECAY

Vout(V )

* Theorem 7: ¥, (V) = =
sup|m;/ (V)H
. : Vey
Vout(Vl) > yout(Vl)
Mi<iskllXtl, .-

* Bounding the weights
increases the input margin

* Weight decay regularization
decreases the GE

* Related to regularization used
by




JACOBIAN BASED REGULARIZATION

* Theorem 7: ¥, (V) = Yout(V)

=

sup
VeY

. ) ”VHZ 2
Vout(Vl) > yout(Vl)
My<i<kll X, — <<kl Xl

* J(V) is the Jacobian of the
DNN at point I/.

- ](-) IS piecewise constant.

e Using the Jacobian of the
DNN leads to a better bound.

= New regularization technique.




RESULTS

e Better performance with less training samples

256 samples 512 samples 1024 samples
: loss #layers noreg. WD LM noreg. WD IM noreg. WD LM
vl e —/ Y T
hinge y 88.37 89.88 93.83 9399 9462 9549 9579 96.57 97.45
Dataset [Eueiwe | 8722 8931 9322 9341 9397 9576 9546 9645 97.60

CCE 88.45 8845 9277 9229 93.14 9525 9538 9579 96.89

CCE 3 89.05 89.05 93.10 91.81 93.02 9532 9511 9586 97.14

CCE: the categorical cross entropy.
* WD: weight decay regularization.
* LM: Jacobian based regularization for large margin.

* Note that hinge loss generalizes better than CCE and
that LM is better than WD as predicted by our theory.
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Deep learning
can be viewed
as a metric
learning.




ASSUMPTIONS

42 M. Mm-

X is fully Y is the
connected hyperbolic tan
and trained



METRIC LEARNING BASED TRAINING

V. € R?

<
Y

7',

min z — s -
X1x2 vl

I,JETraining Set

A+ (1—4) VTVj
0 = amal

—1 i,] € dif ferent clas

i,] € same class



METRIC LEARNING BASED TRAINING

vV, € R% Y 7

* Euclidean Objective:

‘ > lulv-wl -,

Set I,JETraining

min >et
x1,x2 1-1 ARV,
+|Neighboursl Z ‘HVi N V}H B HVi N V]H‘
ViVjare

neighbours
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ROBUSTNESS OF THIS NETWORK

* Metric learning objectives impose stability
e Similar to what we have in the random case
* Close points at the input are close at the output

* Using the theory of (T, €)-robustness, the
T
|Training set|

generalization error scales as\/

* T is the covering number.
* Also here, the number of training samples scales as

exp(w?(Y)/e?).
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RESULTS

e Better performance with less training samples

#Training/class

original pixels

\ININYE

LeNet
Dataset

Proposed 1
Proposed 2

Faces in
the wild
ROC curve

30
81.91%
87.51%
92.32%
94.14%

50 70
86.18% 86.86%
89.89% 91.24%
94.45% 95.67%
95.20% 96.05%

——HD-LBP
——deepFace
DML
——proposed

100
88.49%
92.75%
96.19%
96.21%
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DNN may
solve

optimization
problems




ASSUMPTIONS

Linear
operators S
V e R? X s Y
V=/A+E

Y is a An estimate

projection of
onto




£o-MINIMIZATION

Iterative hard

is th
thresholding I'=pAAs ftlesp si(zee
algorithm (IHT)
V e R? uAt 4 v
V=ZA+E A
i Y is the hard

estimate of

thresholding Aim at solving

operation: keeps
the largest
entries
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£1-MINIMIZATION

Projected
gradient descent I — uAAT uis th.e
algorithm for £, step size
minimization
V € R4 A’ + Y

V=/A+FE

Y projects onto Estimate of
the £, ball Aim at solving

86



UNCONSTRAINED £1-MINIMIZATION

Iterative soft

is th
thresholding F=pAd’ ‘gtlep si(zee
algorithm (ISTA)
V € R pAt o+ v
Soft

1 thresholdin

L>||4] ding
operation

Minimizer of

V=/A+FE



ISTA CONVERGENCE

* Reconstruction error as a function of the number
of iterations
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LEARNED ISTA (LISTA)

Learned
Linear S
operators
V € R4 X + Y
V=7A+E Soft -
thresholding An estimate
operation of

P




LISTA CONVERGENCE

* Replacing I — pAA" and uA" in ISTA with the learned
X and S improves convergence

e Extensions to other models

90



PROJECTED GRADIENT DESCENT (PGD)

| — MAAT U is the
step size
V e R4 A’ + Y
V=ZA+E Y projects onto Estimate of /.

the set Aim at solving




THEORY FOR PGD

* Theorem 8: Let Z € R%, f: R* — R a proper
function, f(Z) < R, C¢(x) the tangent cone of f

at point x, A € ]Rdxm a random Gaussian matrix
and V = ZAA+ E. Then the estimate of PGD at
iteration t, Z¢, obeys

12¢ = z|| < (r0) 121l

where p = sup U(l — pAAT)WT
UWEeCr(x)NB4
and k¢ = 11if f is convex and k; = 2 otherwise.



PGD CONVERGENCE RATE

* p =supU(I — pAAT)WT is the convergence rate

uw
of PGD.
* Let w be the Gaussian mean width of C¢(x) N B,
. 1 1 g Vm—w
If u = (i) o dthenp =1 0(m+d )

: If,u=%thenp = 0(\/%)



INACCURATE PROJECTION

* PGD iterations projectsonto Y = {Z:f(Z) < R}.
* Smaller Y = Smaller w.
—Faster convergence as

m-—-w w
T o )

* Let us assume that our signal belongs to a smaller set
Y ={Z:f(Z) < R} with @ < w.

* |deally, we would like to project
onto Y instead of Y.

* This will lead to faster convergence.

 What if such a projection is not feasible?
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INACCURATE PROJECTION

« We will estimate the projection onto Y by
* Alinear projection P
* Followed by a projection onto Y

* Assumptions:
e |P(Z)—Z|| < €

) d
£¢;., ()0c;0m UP)|| < € VU € R

Projection of U onto the Projection of UP onto the
tangent cone of f at point Z  tangent cone of f at point ZP
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INACCURATE PGD (IPGD)

(I_AAT)P U is the
step size

V e R4 uATp + Y

V=/A+FE

Y projects onto Estimate of 7.
the set Aim at solving




THEORY FOR IPGD

* Theorem 9: Let Z € R?, f: R% — R a proper function,
f(Z) < R, C¢(x) the tangent cone of f at point x, A
€ R**™ a3 random Gaussian matrixand V = ZA + E.
TT@{\ the ‘(‘estimate of IPGD at iteration t, Z¢, obeys

YA A

' (Kf(ﬁ + E)/))t

< D + | Al

(50 + ) + =gy € )14

where p = sup U(l — pAAT)WT
UWEC(x)NB4

y = ||l — pAAT||and k¢ asin Theorem 8.
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CONVERGENCE RATE COMPARISON

* PGD:
(KfP)t
* |PGD:
t 1—(rr(p+ey) t
((Kf(ﬁ + EV)) + 7 —(Kf(ﬁ - E]/)) e)
(,2) .
< (}cfp)

€)

(b) For small values of t



MODEL BASED COMPRESSED SENSING

* Y is the set of sparse vectors with sparsity patterns
that obey a tree structure.

* Projecting onto Y Improves convergence !
rate compared to projecting onto the set
of sparse vectors Y . 05 0.5

* The projection onto Y is more
demanding than onto Y. 025 025 025 0.25

* Note that the probability of selecting atoms from
lower tree levels is smaller than upper ones.

P will be a projection onto certain tree levels — zeroing
the values at lower levels.
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I I 1

— PG

IPGD 1 tree level

IPGD 2 tree levels
- — |IPGD 3 tree levels
- — |PGD 4 tree levels

IPGD 5 tree levels

1 I |

80 100 120 140 160 180

t (Iteration Number)

MODEL BASED COMPRESSED SENSING

Non-zeros picked
entries has zero mean
random Gaussian
distribution with
variance:

- 1 at first two levels

- 0.12 at the third level
- 0.012 at the rest of
the levels




SPECTRAL COMPRESSED SENSING

* Y is the set of vectors with sparse representation
in a 4-times redundant DCT dictionary such that:

£ pre Saanyl e b

* We set P to be a pooling-like operation that keeps
in each window of size 5 only the largest value.
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SPECTRAL COMPRESSED SENSING

1 ! L
20 25 30

t (Iteration Number)




LEARNING THE PROJECTION

* In we have no explicit information about K it might
oe desirable to learn the projection.

* Instead of learning P, it is possible to replace
(I — AAT)P and pAT P with two learned matrices
S and X respectively.

* This leads to a very similar scheme to the one of
LISTA and provides a theoretical foundation for the
success of LISTA.

103



Learned
linear
operators

V e R4

V =

A+E

LEARNED IPGD

+ Y

Y projects onto
the set

U is the
step size

Estimate of
Aim at solving
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Learned
linear
operators

V e R4

V

A+E

LISTA

S
+ P
Y is a proximal
mapping.
PY(U) =

arg[ninHU — ZH
VA
+Af (2)

U is the
step size

Estimate of
Aim at solving
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LISTA MIXTURE MODEL

« Approximation of the projection onto Y
with one linear projection may not
be accurate enough.

 This requires more LISTA layers/iterations.

* Instead, one may use several LISTA networks,
where each approximates a different part of Y

* Training 18 LISTA networks, each with |
3 layers, provides the same accuracy“ y B
like 1 LISTA network with 10 layers. &

ne
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RELATED WORKS

* In a different route it taken to
explain the faster convergence of LISTA. It is shown
that a learning may give a gain due to better
preconditioning of A.
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DNN may Generalization

solve error depends
optimization on the DNN
problems input margin
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