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AGENDA

• History of deep learning.

• A sample of existing theory for deep learning.

• Neural networks with random Gaussian weights.

• Generalization error of deep neural networks.

• Deep Learning as metric learning.

• Solving minimization problems with deep learning.
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FIRST LEARNING PROGRAM

3

1956

“field of study that gives computers the ability to learn 
without being explicitly programmed”. [Arthur Samuel, 1959]



RELATION TO VISION

4
Wiesel and Hubel, 1959



HUMAN VISUAL SYSTEM

5

In the visual cortex there 
are two types of neurons:

Simple and complex



IMITATING THE HUMAN BRAIN

6

Fukushima 1980



CONVOLUTIONAL NEURAL NETWORKS

• Introduction of convolutional neural networks 
[LeCun et. al. 1989]

• Training by backpropagation
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SCENE PARSING

[Farabet et al., 2012, 2013]

• Deep Learning usage before 2012:
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2012 IMAGENET DEEP LEARNING 
BREAKTHROUGH

• Imagenet dataset

• 1.4 Million images

• 1000 categories

• 1.2 Million for training

• 150000 for testing 

• 50000 for validation
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Today deep learning achieves 3.5% by 152 layers [He, Zhang, Ren & Sun, 2016]

[Krizhevsky, Sutskever
& Hinton, 2012]



DEEP NETWORK STRUCTURE

• What each layer of the network learns?

[Krizhevsky, Sutskever & Hinton, 2012]
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LAYERS STRUCTURE

• First layers detect simple patterns that 
corresponds to simple objects

•

[Zeiler & Fergus, 2014]
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LAYERS STRUCTURE

• Deeper layers detects more complex patterns 
corresponding to more complex objects.

•

[Zeiler & Fergus, 2014]
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LAYERS STRUCTURE

•

[Zeiler & Fergus, 2014] 13



WHY THINGS WORK BETTER TODAY?

• More data 

• Better Hardware (GPU)

• Better learning regularization (dropout)

• Deep learning impact and success is not unique 
only to image classification.
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DEEP LEARNING FOR SPEECH RECOGNITION
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OBJECT DETECTION

16[Szegedy et al., 2015]



GAME PLAYING

17[Mnih et al., 2013, 2015]



GO GAME

• AlphaGo - First computer program to ever beat a 
professional player at the game of go

• Program created by Google DeepMind

• Game strategy learned using deep learning [Silver 
et al., 2016].
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DEEP NEURAL NETWORKS (DNN)

• One layer of a neural net

• Concatenation of the layers creates the whole net

Φ(𝑋1, 𝑋2, … , 𝑋𝐾) = 𝜓 𝜓 𝜓 𝑉𝑋1 𝑋2 … 𝑋𝐾

𝑉 ∈ ℝ𝑑 𝑋 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚

𝑋 is a linear 
operation

𝐹 is a non-linear 
function

𝑉𝑋

𝑉 ∈ ℝ𝑑 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓
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CONVOLUTIONAL NEURAL NETWORKS (CNN)

• In many cases, 𝑋 is selected to be a convolution.

• This operator is shift invariant.

• CNN are commonly used with images as they are 
typically shift invariant. 

𝑉 ∈ ℝ𝑑 𝑋 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚

𝑋 is a linear 
operation

𝐹 is a non-linear 
function

𝑉𝑋
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THE NON-LINEAR PART

• Usually 𝜓 = 𝑔 ∘ 𝑓.

• 𝑓 is the (point-wise) activation function

• 𝑔 is a pooling or an aggregation operator. 

ReLU 
𝑓(x) = max(x, 0)

Sigmoid 

𝑓 𝑥 =
1

1 + 𝑒−𝑥

Hyperbolic 
tangent 

𝑓 𝑥 = tanh(𝑥)

𝑉1 𝑉2 𝑉𝑟𝑉3 𝑉4 … … … …

max
𝑖

𝑉𝑖

Max pooling Mean pooling

1

𝑛
 

𝑖=1

𝑛

𝑉𝑖

𝑙𝑝 pooling
𝑝

 
𝑖=1

𝑛

𝑉𝑖
𝑝

𝑋 𝜓
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WHY DNN WORK?

What is so 
special with the 
DNN structure? What is the role of 

the depth of DNN?

What is the role 
of pooling?

What is the role of 
the activation 

function?

How many 
training samples 

do we need?

What is the 
capability of DNN?

What happens to the 
data throughout the 

layers?
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REPRESENTATION POWER

• Neural nets serve as a universal approximation for any 
measurable Borel functions [Cybenko 1989, Hornik 1991].

• In particular, let the non-linearity 𝜓 be a bounded, 
non-constant continuous function, 𝐼𝑚 be the 𝑚-
dimensional hypercube, and 𝐶 𝐼𝑚 be the space of 
continuous functions on 𝐼𝑚. Then for any 𝑓 ∈ 𝐶 𝐼𝑚
and 𝜖 > 0, there exists 𝑚 > 0, and 𝑋 ∈ ℝ𝑑×𝑚, 
𝐵 ∈ ℝ𝑚, 𝑊 ∈ ℝ𝑚 such that the neural network 

𝐹 𝑉 = 𝜓 𝑉𝑋 𝑊𝑇

approximates 𝑓 with a precision 𝜖:

𝐹 𝑉 − 𝑓 𝑉 < 𝜖, ∀𝑉 ∈ ℝ𝑑
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ESTIMATION ERROR

• The estimation error of a function f by a neural 
networks scales as [Barron 1992].

𝑂
𝐶𝑓

𝑁
+ 𝑂

𝑁𝑑

𝑛
log(𝑛)Smoothness of 

approximated 
function

Number of 
neurons in the 

DNN

Number of 
training 

examples

Input 
dimension
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DEPTH OF THE NETWORK

• DNN allow representing restricted Boltzmann 
machines with a number of parameters 
exponentially greater than the number of the 
network parameters [Montúfar & Morton, 2014]

• Each DNN layer with ReLU divides the space by a 
hyper-plane.

• Therefore the depth of the network divides the 
space into an exponential number of sets 
compared to the number of parameters [Montúfar, 

Pascanu, Cho & Bengio, 2014]
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DEPTH EFFICIENCY OF CNN

• Function realized by CNN, with ReLU and max-
pooling, of polynomial size requires super-
polynomial size for being approximated by shallow 
network [Cohen et al., 2016].

• Standard convolutional network design has 
learning bias towards statistics of natural images 
[Cohen et al., 2016].

26



ROLE OF POOLING

• The pooling stage provides shift invariance [Bruna, 
LeCun & Szlam, 2013].

• A connection is drawn between the pooling stage 
and the phase retrieval methods [Bruna, Szlam & 
LeCun, 2014].

• This allows calculating Lipchitz constants of each 
DNN layer 𝜓(∙ 𝑋) and empirically recovering the 
input of a layer from its output. 

• However, the Lipchitz constants calculated are very 
loose and no theoretical guarantees are given for 
the recovery.
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SUFFICIENT STATISTIC AND INVARIANCE

• Given a certain task at hand:

• Minimal sufficient statistic guarantees that we can 
replace raw data with a representation with 
smallest complexity and no performance loss. 

• Invariance guarantees that the statistic is constant 
with respect to uninformative transformations of 
the data.

• CNN are shown to have these properties for many 
tasks [Soatto & Chiuso, 2016].
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SCATTERING TRANSFORMS

• Scattering Transforms - a cascade of wavelet 
transform convolutions with nonlinear modulus 
and averaging operators.

• Scattering coefficients are stable encodings of 
geometry and texture [Bruna & Mallat, 2013]

29

Original 
image with 𝑑
pixels

Recovery from 
scattering transform 
with 1 layer

Recovery from 
scattering transform 
with 2 layers

Images from slides of Joan Bruna in ICCV 2015 tutorial



SCATTERING TRANSFORMS AND DNN

• More layers create features that can be made 
invariant to increasingly more complex 
deformations. 

• Layers in a DNN encode complex, class-specific 
geometry.

• Deeper architectures are able to better capture 
invariant properties of objects and scenes in 
images
[Bruna & Mallat, 2013]
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SCATTERING TRANSFORMS AS A METRIC

• Scattering transforms may be used as a metric.

• Inverse problems can be solved by minimizing 
distance at the scattering transform domain.

• Leads to remarkable results in super-resolution
[Bruna, Sprechmann & Lecun, 2016]
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SCATTERING SUPER RESOLUTION

Original Best Linear Estimate State-of-the-art Scattering estimate

Images from slides of Joan Bruna in CVPR 2016 tutorial

[Bruna, Sprechmann & Lecun, 2016]
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MINIMIZATION

• The local minima in deep networks are not far from 
the global minimum.

• saddle points are the 
main problem of deep
Learning optimization.

• Deeper networks have 
more local minima but less saddle points. 
[Saxe, McClelland & Ganguli, 2014], [Dauphin, Pascanu, Gulcehre, 
Cho, Ganguli & Bengio, 2014] [Choromanska, Henaff, Mathieu, Ben 
Arous & LeCun, 2015]

33

[Choromanska et al., 2015]



GLOBAL OPTIMALITY IN DEEP LEARNING

• Deep learning is a positively homogeneous 
factorization problem, i.e., ∃𝑝 ≥ 0 such that 
∀𝛼 ≥ 0 DNN obey

Φ 𝛼𝑋1, 𝛼𝑋2, … , 𝛼𝑋𝐾 = 𝛼𝑝Φ 𝑋1, 𝑋2, … , 𝑋𝐾 .

• With proper regularization, local minima are global.

• If the network is large enough, global minima can 
be found by local descent.

Guarantees of proposed 
framework

[Haeffele & Vidal, 2015]
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Take 
Home 

Message

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

35



• Infusion of random weights reveals internal 
properties of a system

ASSUMPTIONS – GAUSSIAN WEIGHTS

𝑉 ∈ ℝ𝑑 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

𝑋𝑖 , … , 𝑋𝑖, …,𝑋𝐾 are 
random Gaussian matrices

Compressed 
Sensing

Phase 
Retrieval

Sparse 
Recovery

Deep 
Learning

[Saxe et al. 
2014] 

[Dauphin et 
al. 2014] 

[Choromanska
et al. 2015] [Arora et 

al. 2014] 
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• Pooling provides invariance [Boureau et. al. 2010, 
Bruna et. al. 2013].

We assume that all equivalent points in the data were 
merged together and omit this stage.

Reveals the role of the other components in the DNN.

ASSUMPTIONS – NO POOLING

𝑉 ∈ ℝ𝑑 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

𝜓 is an element wise 
activation function

max(v, 0) 1

1 + 𝑒−𝑥
tanh(𝑣)
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ASSUMPTIONS – LOW DIMENSIONAL DATA

Υ is a low dimensional set

𝑉 ∈ Υ 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

Gaussian 
Mixture 
Models 
(GMM)

Signals with 
Sparse 

Representations

Low 
Dimensional 

Manifolds

Low Rank 
Matrices
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Gaussian 
Mean 
Width

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems
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WHAT HAPPENS TO SPARSE DATA IN DNN?

• Let Υ be sparsely represented data

• Example: Υ = {𝑉 ∈ ℝ3: 𝑉 0 ≤ 1}

• ΥX is still sparsely represented data

• Example: ΥX = {𝑉 ∈ ℝ3: ∃𝑊 ∈ ℝ3, 𝑉 = 𝑋𝑊, 𝑊 0 ≤ 1}

• 𝜓(ΥX) not sparsely represented

• But is still low dimensional

Υ𝑋

𝜓(Υ𝑋)

Υ
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GAUSSIAN MEAN WIDTH

• Gaussian mean width:
𝜔 Υ = 𝐸 sup

𝑉,𝑊∈Υ
𝑉 − 𝑊, 𝑔 ,       𝑔~𝑁(0, 𝐼).

𝑊

𝑉

Υ

𝑔
The width of 
the set Υ in 

the direction 
of 𝑔:
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MEASURE FOR LOW DIMENSIONALITY

• Gaussian mean width:
𝜔 Υ = 𝐸 sup

𝑉,𝑊∈Υ
𝑉 − 𝑊, 𝑔 ,       𝑔~𝑁(0, 𝐼).

• 𝜔2 Υ is a measure for the dimensionality of the 
data.

• Examples:

If Υ ⊂ 𝔹𝑑 is a Gaussian 
Mixture Model with 𝑘
Gaussians then

𝜔2 Υ = 𝑂(𝑘)

If Υ ⊂ 𝔹𝑑 is a data 
with 𝑘-sparse 
representations then
𝜔2 Υ = 𝑂(𝑘 log 𝑑)
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Theorem 1: small 
𝜔2 Υ

𝑚
imply 𝜔2 Υ ≈ 𝜔2 𝜓(𝑉𝑋)

GAUSSIAN MEAN WIDTH IN DNN

Υ ⊂ ℝ𝑑

𝑋 𝜓

𝜓(𝑉𝑋) ∈ ℝ𝑚
𝑋 is a linear 
operation

𝐹 is a non-linear 
function

Υ𝑋 ⊂ ℝ𝑚

Small 𝜔2 Υ Small 𝜔2 𝜓(𝑉𝑋)

It is sufficient to provide proofs only for a single layer
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

Stability
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ASSUMPTIONS

𝑋 is a 
random 

Gaussian 
matrix

𝜓 is an 
element wise 

activation 
function

𝑉 ∈ Υ

𝑉 ∈ 𝕊𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

max(v, 0) 1

1 + 𝑒−𝑥
tanh(𝑣)

𝑚 = 𝑂 𝛿−6𝜔2 Υ
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ISOMETRY IN A SINGLE LAYER

Theorem 2: 𝜓(∙ 𝑋) is a 𝛿-isometry in the Gromov-
Hausdorff sense between the sphere 𝕊𝑑−1 and the 
Hamming cube [Plan & Vershynin, 2014, Giryes, Sapiro & Bronstein 2016].

𝑉 ∈ 𝕊𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

• If two points belong to the same tile 
then their distance < 𝛿

• Each layer of the network keeps the 
main information of the data

The rows of 𝑋 create a tessellation of the space.
 This stands in line with [Montúfar et. al. 2014]
 This structure can be used for hashing 46



DNN AND HASHING

• A single layer performs a locally sensitive hashing.

• Deep network with random weights may be 
designed to do better [Choromanska et al., 2016].

• It is possible to train DNN for hashing, which 
provides cutting-edge results [Masci et al., 2012], 
[Lai et al., 2015].
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DNN STABLE EMBEDDING

𝑉 ∈ 𝕊𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

Theorem 3: There exists an algorithm 𝒜 such that

𝑉 − 𝒜(𝜓(𝑉𝑋)) < 𝑂
𝜔 Υ

𝑚
= 𝑂 𝛿3

[Plan & Vershynin, 2013, Giryes, Sapiro & Bronstein 2016].

After 𝐾 layers we have an error 𝑂 𝐾𝛿3

Stands in line with [Mahendran and Vedaldi, 2015].

DNN keep the important information of the data

48



RECOVERY FROM DNN OUTPUT

[Mahendran and Vedaldi, 2015].
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

DNN with 
Gaussian 
Weights
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ASSUMPTIONS

𝑋 is a 
random 

Gaussian 
matrix

𝜓 is the ReLU
𝑉 ∈ Υ

𝑉 ∈ ℝ𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

max(v, 0)

𝑚 = 𝑂 𝛿−4𝜔4 Υ
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DISTANCE DISTORTION

𝑉 ∈ Υ 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

Theorem 4: for 𝑉, 𝑊 ∈ Υ

𝜓(𝑉𝑋) − 𝜓(𝑊𝑋) 2 − 1
2 V − W 2

−
V W

𝜋
(sin ∠ V, W

∠ V, W

The smaller ∠ V, W the 
smaller the distance we get 
between the points
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ANGLE DISTORTION

𝑉 ∈ Υ 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

Theorem 5: for 𝑉, 𝑊 ∈ Υ

cos ∠ 𝜓(𝑉𝑋), 𝜓(W𝑋) − cos ∠ V, W

−
1

𝜋
(sin ∠ V, 𝑊

∠ V, W

Behavior of ∠ 𝜓(𝑉𝑋), 𝜓(𝑊𝑋)
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DISTANCE AND ANGLES DISTORTION

Points with small angles between them become 
closer than points with larger angles between them

𝑋 𝜓

Class II
Class I Class IIClass I
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POOLING AND CONVOLUTIONS

• We test empirically this behavior on convolutional 
neural networks (CNN) with random weights and 
the MNIST, CIFAR-10 and ImageNet datasets.

• The behavior predicted in the theorems remains 
also in the presence of pooling and convolutions. 
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TRAINING DATA SIZE

• Stability in the network implies that close points in the 
input are close also at the output

• Having a good network for an 휀-net of the input set Υ
guarantees a good network for all the points in Υ.

• Using Sudakov minoration the number of data points 
is 

exp(𝜔2 Υ /휀2) .

• Though this is not a tight bound, it introduces the 
Gaussian mean width 𝜔 Υ as a measure for the 
complexity of the input data and the required number 
of training samples.
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

Role of 
Training

57



ROLE OF TRAINING

• Having a theory for Gaussian weights we test the 
behavior of DNN after training.

• We looked at the MNIST, CIFAR-10 and ImageNet
datasets.

• We will present here only the ImageNet results. 

• We use a state-of-the-art pre-trained network for 
ImageNet [Simonyan & Zisserman, 2014].

• We compute inter and intra class distances.
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Compute the distance ratio: 
 𝑉−  𝑍

𝑊−𝑉

INTER BOUNDARY POINTS DISTANCE RATIO

Class II
Class I

Class IIClass I

𝑊𝑉

𝑉 is a random point and 
𝑊 its closest point from 

a different class.  

 𝑉

 𝑉 is the output of 𝑉 and  𝑍 the closest 
point to  𝑉 at the output from a 

different class.

𝑊 − 𝑉
 𝑍

 𝑉 −  𝑍

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓
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Compute the distance ratio: 
 𝑉−  𝑍

𝑊−𝑉

INTRA BOUNDARY POINTS DISTANCE RATIO

Class IIClass I Class IIClass I

𝑊

𝑉

Let 𝑉 be a point and 𝑊
its farthest point from 

the same class.  

 𝑉

Let  𝑉 be the output of 𝑉 and  𝑍 the 
farthest point from  𝑉 at the output 

from the same class

𝑊 − 𝑉

 𝑍

 𝑉 −  𝑍

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓
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Inter-class Intra-class

 𝑉 −  𝑍

𝑊 − 𝑉

 𝑉 −  𝑍

𝑊 − 𝑉

BOUNDARY DISTANCE RATIO
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Compute the distance ratios: 
 𝑉−  𝑊

𝑉−𝑊
,

 𝑉−  𝑍

𝑉−𝑍

AVERAGE POINTS DISTANCE RATIO

Class II

Class I

Class II
Class I𝑍

𝑉

𝑉, 𝑊 and 𝑍 are three 
random points

 𝑉

 𝑉,  𝑊 and  𝑍 are the outputs of 𝑉, 𝑊
and 𝑍 respectively.

𝑉 − 𝑊  𝑍

 𝑉 −  𝑍

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

 𝑊

 𝑉 −  𝑊

𝑉 − 𝑍

𝑊
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AVERAGE DISTANCE RATIO

Inter-class Intra-class

 𝑉 −  𝑊

𝑉 − 𝑊

 𝑉 −  𝑍

𝑉 − 𝑍
63



ROLE OF TRAINING

• On average distances are preserved in the trained 
and random networks.

• The difference is with respect to the boundary 
points. 

• The inter distances become larger.

• The intra distances shrink.
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

Generali-
zation
Error
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Linear classifier

ASSUMPTIONS

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

𝜓 is the ReLU
Two

Classes
𝑤

𝑤𝑇Φ 𝑋1, 𝑋2, … , 𝑋𝐾 = 0

∈ Υ

Input Space Feature Space
66



GENERALIZATION ERROR (GE)

• In training, we reduce the classification error 
ℓtraining of the training data as the number of 

training examples 𝐿 increases.

• However, we are interested to reduce the error 
ℓtest of the (unknown) testing data as 𝐿 increases.

• The difference between the two is the 
generalization error

GE = ℓtraining − ℓtest

• It is important to understand the GE of DNN
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REGULARIZATION TECHNIQUES

• Weight decay – penalizing DNN weights [Krogh & 
Hertz, 1992]. 

• Dropout - randomly drop units (along with their 
connections) from the neural network during 
training [Hinton et al., 2012, Srivastava et al., 2014].

• DropConnect – dropout extension [Wan et al., 2013]

• Batch normalization [Ioffe & Szegedy, 2015].

• Stochastic gradient descent (SGD) [Hardt, Recht & 
Singer, 2016].

• Path-SGD [Neyshabur et al., 2015].
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A SAMPLE OF GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙
log 𝐿

𝐿

[Shalev-Shwartz and Ben-David, 2014].

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾 𝑤 2  

𝑖

𝑋𝑖
2,2

[Neyshabur et al., 2015].

•
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A SAMPLE OF GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙
log 𝐿

𝐿

[Shalev-Shwartz and Ben-David, 2014].

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾 𝑤 2  

𝑖

𝑋𝑖
2,2

[Neyshabur et al., 2015].

• Note that in both cases the GE grows with the depth
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DNN INPUT MARGIN

• Theorem 6: If for every input margin 𝛾𝑖𝑛 𝑉𝑖 > 𝛾

then 𝐺𝐸 ≤  𝑁𝛾/2(Υ) 𝑚

• 𝑁𝛾/2(Υ) is the covering number of the data Υ.

• 𝑁𝛾/2(Υ) gets smaller as 𝛾 gets larger.

• Bound is independent of depth.

• Our theory relies on the 
robustness framework 
[Xu & Mannor, 2015].

𝑉𝑖

𝑉𝑖

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016]
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INPUT MARGIN BOUND

• Maximizing the input margin directly is hard

• Our strategy: relate the input margin to the output 
margin 𝛾𝑜𝑢𝑡 𝑉𝑖 and other DNN properties

• Theorem 7:

𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

𝑉𝑖

Φ(𝑉𝑖)

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016] 72



OUTPUT MARGIN

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• Output margin is easier to
maximize – SVM problem

• Maximized by many cost 
functions, e.g., hinge loss.

𝑉𝑖

Φ(𝑉𝑖)
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GE AND WEIGHT DECAY

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥

𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• Bounding the weights 
increases the input margin

• Weight decay regularization
decreases the GE

• Related to regularization used 
by [Haeffele & Vidal, 2015]

𝑉𝑖

Φ(𝑉𝑖)
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JACOBIAN BASED REGULARIZATION

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥

𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• 𝐽 𝑉 is the Jacobian of the 
DNN at point 𝑉.

• 𝐽 ∙ is piecewise constant.

• Using the Jacobian of the
DNN leads to a better bound.

• New regularization technique.
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RESULTS

• Better performance with less training samples

• CCE: the categorical cross entropy.

• WD: weight decay regularization.

• LM: Jacobian based regularization for large margin.

• Note that hinge loss generalizes better than CCE and 
that LM is better than WD as predicted by our theory.

MNIST 
Dataset

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016]
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

DNN as 
Metric 

Learning

77



𝜓

ASSUMPTIONS

𝑋 is fully 
connected
and trained

𝜓 is the 
hyperbolic tan

𝑉 ∈ ℝ𝑑 𝜓𝑋1 𝑋2  𝑉

78



METRIC LEARNING BASED TRAINING

• Cosine Objective: 

min
𝑋1,𝑋2

 

𝑖,𝑗∈𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡

 𝑉𝑖
𝑇  𝑉𝑗

 𝑉𝑖
 𝑉𝑗

− 𝜗𝑖,𝑗

2

𝜗𝑖,𝑗 =  
𝜆 + (1 − 𝜆)

𝑉𝑖
𝑇𝑉𝑗

𝑉𝑖 𝑉𝑗

𝑖, 𝑗 ∈ 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠

−1 𝑖, 𝑗 ∈ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠

𝜓𝑉𝑖 ∈ ℝ𝑑 𝜓𝑉𝑋𝑋1 𝑋2  𝑉𝑖

Classification 
term

Metric 
preservation term
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METRIC LEARNING BASED TRAINING

• Euclidean Objective: 

min
𝑋1,𝑋2

𝜆
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑆𝑒𝑡

 
𝑖,𝑗∈𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑆𝑒𝑡

𝑙𝑖𝑗  𝑉𝑖 −  𝑉𝑗 − 𝑡𝑖𝑗 +

+ 1−𝜆
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

 
𝑉𝑖,𝑉𝑗 𝑎𝑟𝑒

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

 𝑉𝑖 −  𝑉𝑗 − 𝑉𝑖 − 𝑉𝑗

𝜓𝑉𝑖 ∈ ℝ𝑑 𝜓𝑉𝑋𝑋1 𝑋2  𝑉𝑖

𝑙𝑖𝑗 =  
1 𝑖, 𝑗 ∈

𝑠𝑎𝑚𝑒
𝑐𝑙𝑎𝑠𝑠

−1 𝑖, 𝑗 ∈
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡

𝑐𝑙𝑎𝑠𝑠

𝑙𝑖𝑗 =

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑟𝑎
𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑖, 𝑗 ∈
𝑠𝑎𝑚𝑒
𝑐𝑙𝑎𝑠𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟
𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑖, 𝑗 ∈
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡

𝑐𝑙𝑎𝑠𝑠

Classification term

Metric learning term
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ROBUSTNESS OF THIS NETWORK

• Metric learning objectives impose stability

• Similar to what we have in the random case

• Close points at the input are close at the output

• Using the theory of 𝑇, 𝜖 -robustness, the 

generalization error scales as
𝑇

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

• 𝑇 is the covering number.

• Also here, the number of training samples scales as 

exp(𝜔2 Υ /휀2) .
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RESULTS

• Better performance with less training samples
#Training/class 30 50 70 100

original pixels 81.91% 86.18% 86.86% 88.49%

LeNet 87.51% 89.89% 91.24% 92.75%

Proposed 1 92.32% 94.45% 95.67% 96.19%

Proposed 2 94.14% 95.20% 96.05% 96.21%

MNIST 
Dataset

Faces in 
the wild

ROC curve

[Huang, Qiu, Sapiro, 
Calderbank, 2015]
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

DNN as 
Metric 

Learning
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ASSUMPTIONS

𝑋 𝜓

𝑆

𝜓 is a 
projection 

onto Υ𝑍 ∈ Υ

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸

 𝑍

An estimate 
of 𝑍

+

Linear 
operators
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ℓ0-MINIMIZATION

𝜓 is the hard 
thresholding

operation: keeps 
the largest 
k entries 

𝑍 is a
k−sparse
vecotr

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸

Iterative hard 
thresholding 

algorithm (IHT)

𝜇𝐴𝑇 𝜓

𝐼 − 𝜇𝐴𝐴𝑇

 𝑍+

𝜇 is the 
step size

A k-sparse
estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡  𝑍
1

≤ k
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ℓ1-MINIMIZATION

𝜓 projects onto 
the ℓ1 ball

𝑍 1 ≤ 𝑅

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸 Estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡  𝑍
1

≤ 𝑅

Projected 
gradient descent 
algorithm for ℓ1

minimization

𝜇𝐴𝑇 𝜓

𝐼 − 𝜇𝐴𝐴𝑇

 𝑍+

𝑅

𝑅

−𝑅

−𝑅

𝜇 is the 
step size
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UNCONSTRAINED ℓ1-MINIMIZATION

𝜇𝐴𝑇 𝜓

𝐼 − 𝜇𝐴𝐴𝑇

Soft 
thresholding

operation

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸

 𝑍+

1
𝜇

≥ 𝐴

Iterative soft 
thresholding 

algorithm (ISTA)

- 𝜆𝜇
Minimizer of 

min
 𝑍

𝑉 −  𝑍𝐴 + 𝜆  𝑍
1

𝜆𝜇

𝜇 is the 
step size

[Daubechies, Defrise, Mol, 2004] 87



ISTA CONVERGENCE

• Reconstruction error as a function of the number 
of iterations
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LEARNED ISTA (LISTA)

𝑋 𝜓

𝑆

𝑍 ∈ Υ

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸

 𝑍

An estimate 
of 𝑍

+

Learned 
Linear 

operators

[Gregor & LeCun, 2010]

Soft 
thresholding

operation
- 𝜆 𝜆
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LISTA CONVERGENCE

• Replacing 𝐼 − 𝜇𝐴𝐴𝑇 and 𝜇𝐴𝑇 in ISTA with the learned 
𝑋 and 𝑆 improves convergence [Gregor & LeCun, 2010]

• Extensions to other models [Sprechmann, Bronstein & Sapiro, 2015], 

[Remez, Litani & Bronstein, 2015], [Tompson, Schlachter, Sprechmann & Perlin, 2016].

100

20
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PROJECTED GRADIENT DESCENT (PGD)

𝜓 projects onto 
the set Υ

𝑓(  𝑍) ≤ 𝑅

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸

𝜇𝐴𝑇 𝜓

𝐼 − 𝜇𝐴𝐴𝑇

 𝑍+

𝑓(𝑍) ≤ 𝑅

𝜇 is the 
step size

Estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡. 𝑓(  𝑍) ≤ 𝑅
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THEORY FOR PGD

• Theorem 8: Let 𝑍 ∈ ℝ𝑑, 𝑓: ℝ𝑑 → ℝ a proper 
function, 𝑓 𝑍 ≤ 𝑅, 𝐶𝑓(𝑥) the tangent cone of 𝑓
at point 𝑥, 𝐴 ∈ ℝ𝑑×𝑚 a random Gaussian matrix 
and 𝑉 = 𝑍𝐴 + 𝐸. Then the estimate of PGD at 
iteration 𝑡,  𝑍𝑡, obeys

 𝑍𝑡 − 𝑍 ≤ 𝜅𝑓𝜌
𝑡

𝑍 ,

where 𝜌 = sup
𝑈,𝑊∈𝐶𝑓 𝑥 ∩ℬ𝑑

𝑈 𝐼 − 𝜇𝐴𝐴𝑇 𝑊𝑇

and  𝜅𝑓 = 1 if 𝑓 is convex and 𝜅𝑓 = 2 otherwise.
[Oymak, Recht & Soltanolkotabi, 2016].
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PGD CONVERGENCE RATE

• 𝜌 = sup
𝑈,𝑊

𝑈 𝐼 − 𝜇𝐴𝐴𝑇 𝑊𝑇 is the convergence rate 

of PGD.

• Let 𝜔 be the Gaussian mean width of 𝐶𝑓 𝑥 ∩ ℬ𝑑. 

• If 𝜇 =
1

𝑚+ 𝑑
2 ≃

1

𝑑
then 𝜌 = 1 − 𝑂

𝑚−𝜔

𝑚+𝑑
.

• If 𝜇 =
1

𝑚
then 𝜌 = 𝑂

𝜔

𝑚
. 
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INACCURATE PROJECTION

• PGD iterations projects onto Υ =  𝑍: 𝑓  𝑍 ≤ 𝑅 .

• Smaller Υ ⇒ Smaller 𝜔.

Faster convergence as

𝜌 = 1 − 𝑂
𝑚−𝜔

𝑚+𝑑
or 𝑂

𝜔

𝑚

• Let us assume that our signal belongs to a smaller set 
 Υ =  𝑍:  𝑓  𝑍 ≤ 𝑅 with  𝜔 ≪ 𝜔. 

• Ideally, we would like to project 
onto Υ instead of Υ.

• This will lead to faster convergence.

• What if such a projection is not feasible?

⇒ 𝑓(  𝑍) ≤ 𝑅

 𝑓(  𝑍) ≤ 𝑅
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INACCURATE PROJECTION

• We will estimate the projection onto  Υ by

• A linear projection 𝑃

• Followed by a projection onto Υ

• Assumptions:

• 𝑃(𝑍)−𝑍 ≤ ϵ

• ℘𝐶 𝑓(𝑍)
(𝑈)−℘𝐶𝑓(𝑍𝑃)

(𝑈𝑃) ≤ ϵ, ∀𝑈 ∈ ℝ𝑑

Projection of 𝑈𝑃 onto the
tangent cone of 𝑓 at point 𝑍𝑃

Projection of 𝑈 onto the 

tangent cone of  𝑓 at point 𝑍

 𝑓(  𝑍) ≤ 𝑅

95



INACCURATE PGD (IPGD)

𝜓 projects onto 
the set Υ

𝑓(𝑍) ≤ 𝑅

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸

𝜇𝐴𝑇𝑃 𝜓

𝐼 − 𝐴𝐴𝑇 𝑃

 𝑍+

 Υ

𝜇 is the 
step size

Estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡.  𝑓(  𝑍) ≤ 𝑅

 𝑓(𝑍) ≤ 𝑅
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THEORY FOR IPGD

• Theorem 9: Let 𝑍 ∈ ℝ𝑑, 𝑓: ℝ𝑑 → ℝ a proper function, 
𝑓 𝑍 ≤ 𝑅,  𝐶𝑓(𝑥) the tangent cone of 𝑓 at point 𝑥, 𝐴
∈ ℝ𝑑×𝑚 a random Gaussian matrix and 𝑉 = 𝑍𝐴 + 𝐸. 
Then the estimate of IPGD at iteration 𝑡,  𝑍𝑡, obeys

 𝑍𝑡 − 𝑍

≤ 𝜅𝑓  𝜌 + 𝜖𝛾
𝑡

+
1 − 𝜅𝑓  𝜌 + 𝜖𝛾

𝑡

1 − 𝜅𝑓  𝜌 + 𝜖𝛾
𝜖 𝑍 ,

where 𝜌 = sup
𝑈,𝑊∈𝐶𝑓 𝑥 ∩ℬ𝑑

𝑈 𝐼 − 𝜇𝐴𝐴𝑇 𝑊𝑇

𝛾 = 𝐼 − 𝜇𝐴𝐴𝑇 and  𝜅𝑓 as in Theorem 8.
[Giryes, Eldar, Bronstein & Sapiro, 2016]
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CONVERGENCE RATE COMPARISON

• PGD:

𝜅𝑓𝜌
𝑡

• IPGD:

𝜅𝑓  𝜌 + 𝜖𝛾
𝑡

+
1 − 𝜅𝑓  𝜌 + 𝜖𝛾

𝑡

1 − 𝜅𝑓  𝜌 + 𝜖𝛾
𝜖

 ≃
(𝑎)

𝜅𝑓  𝜌
𝑡

+ 𝜖

(a) assuming that 𝜖 is negligible compared to  𝜌

(b) For small values of 𝑡

 ≪
(𝑏)

𝜅𝑓𝜌
𝑡
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MODEL BASED COMPRESSED SENSING

•  Υ is the set of sparse vectors with sparsity patterns 
that obey a tree structure.

• Projecting onto  Υ improves convergence 
rate compared to projecting onto the set 
of sparse vectors Υ [Baraniuk et al., 2010].

• The projection onto  Υ is more 
demanding than onto Υ.

• Note that the probability of selecting atoms from 
lower tree levels is smaller than upper ones.

• 𝑃 will be a projection onto certain tree levels – zeroing 
the values at lower levels.

1

0.5 0.5

0.25 0.25 0.25 0.25

99



MODEL BASED COMPRESSED SENSING

Non-zeros picked 
entries has zero mean 
random Gaussian 
distribution with 
variance:
- 1 at first two levels
- 0.12 at the third level
- 0.012 at the rest of 
the  levels
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SPECTRAL COMPRESSED SENSING

•  Υ is the set of vectors with sparse representation 
in a 4-times redundant DCT dictionary such that: 

• The active atoms are selected uniformly at random such that  
minimum distance between neighboring atoms is 5.

• The value of each representation coefficient ~𝑁(0,1) i.i.d.

• We set the neighboring coefficients at distance 1 and 2 of each 
active atom to be ~𝑁(0,0.12) and ~𝑁(0,0.012) , respectively

• We set 𝑃 to be a pooling-like operation that keeps 
in each window of size 5 only the largest value.
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SPECTRAL COMPRESSED SENSING
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LEARNING THE PROJECTION

• In we have no explicit information about  Κ it might 
be desirable to learn the projection. 

• Instead of learning 𝑃, it is possible to replace 

𝐼 − 𝐴𝐴𝑇 𝑃 and 𝜇𝐴𝑇𝑃 with two learned matrices 

𝑆 and 𝑋 respectively.

• This leads to a very similar scheme to the one of 
LISTA and provides a theoretical foundation for the 
success of LISTA.
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LEARNED IPGD

𝜓 projects onto 
the set Υ

𝑓(𝑍) ≤ 𝑅

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸

𝑋 𝜓

𝑆

 𝑍+

 Υ

𝜇 is the 
step size

Estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡.  𝑓(  𝑍) ≤ 𝑅

 𝑓(𝑍) ≤ 𝑅

Learned 
linear  

operators
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LISTA

𝜓 is a proximal 
mapping.

𝜓 𝑈 =

argmin
 𝑍

𝑈 −  𝑍

+𝜆𝑓(  𝑍)

𝑉 ∈ ℝ𝑑

𝑉 = 𝑍𝐴 + 𝐸

𝑋 𝜓

𝑆

 𝑍+

 Υ

𝜇 is the 
step size

Estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

+𝜆  𝑓(  𝑍)

 𝑓(𝑍) ≤ 𝑅

Learned 
linear  

operators
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LISTA MIXTURE MODEL

• Approximation of the projection onto  Υ
with one linear projection may not 
be accurate enough.

• This requires more LISTA layers/iterations.

• Instead, one may use several LISTA networks, 
where each approximates a different part of  Υ

• Training 18 LISTA networks, each with
3 layers, provides the same accuracy
like 1 LISTA network with 10 layers.

 Υ

 Υ
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RELATED WORKS

• In [Bruna et al. 2016] a different route it taken to 
explain the faster convergence of LISTA. It is shown 
that a learning may give a gain due to better 
preconditioning of A.
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Take 
Home 

Message

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems
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