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Energy Neutrality
Communications 

Theory

Energy-neutral network: A self-sustained network, that is able to operate without
requiring energy from the electrical supply.

Very ambitious goal, which requires two components:

• Energy efficiency maximization: optimize the system radio resources to make
the most efficient use of the available energy.

• Energy harvesting and transfer to obtain new energy and redistribute it across
the network, as the available reserves are being depleted.

The tutorial will focus on both aspects, considering 5G applications and scenarios.

• The first half of the tutorial will discuss resource allocation methods for energy
efficiency maximization.

• The second half of the tutorial will discuss energy harvesting and transfer
methods.

Survey paper on energy management techniques in 5G

S. Buzzi, C.-L. I, T. E. Klein, H. V. Poor, C. Yang, A. Zappone
“A Survey of Energy-Efficient Techniques for 5G Networks and Challenges Ahead”
IEEE Journal on Selected Areas in Communications: Special Issue on Energy-efficient
techniques for 5G, vol. 34, no. 4, April 2016.
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Why do we need energy neutrality in communications?
Communications 

Theory

ICT energy consumption1

1TREND Final Workshop Brussels, October 24, 2013
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Energy demand prediction in Germany3

Yearly Energy Demand ICT

Households Facility 
Management

Working-Place IT Telecommunicatio
ns

Public Data IT Centers

2010 28,9 0,2 9,6 6,5 0,3 10,5

2015 21,2 0,2 8 6 0,3 12

2020 15,4 1,5 6,4 7,1 0,3 14,3

2025 13,1 2,0 5,5 8,6 0,3 16,4
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33rd study for ICT energy demand in Germany, 18. November 2015
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Why do we need energy neutrality in communications?
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And the numbers are rapidly increasing, especially with 5G networks!

• Exponential increase of devices (50 billion by 2020) and data traffic.4 5 6

• Battery lifetimes to increase by a factor 10 or more (especially for M2M
communications)

“Energy efficiency is defined as the number of bits which can be transmitted per Joule
of energy. 5G should support a 1000 times traffic increase in the next 10 years

timeframe, with an energy consumption by the whole network of only half that is
typically consumed by today’s networks. This leads to the requirement of an energy

efficiency increase of x2000 in the next 10 years timeframe.”7

“5G will bring drastic energy efficiency improvement and develop energy harvesting
everywhere. This energy chase will cover terminal devices, network elements, and the

network as a whole including data centers.”8

4Ericsson, “More than 50 billion connected devices”, White Paper, February 2011
5Cisco, “Global Mobile Data Traffic Forecast Update,” 2010–2015 White Paper, February 2011
6Nokia Siemens, “Networks 2011, 2020: Beyond 4G Radio Evolution for the Gigabit Experience”, White

Paper, February 2011
7Next Generation Mobile Network (NGMN) alliance 5G white paper,” February 2015.
8“5G Public Private Partnership 5G manifesto”, Mobile World Congress, March 2015.
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Energy Efficiency Maximization

Tutorial/Survey on Resource Allocation for Energy Efficiency

A. Zappone and E. A. Jorswieck
“Energy Efficiency in Wireless Networks via Fractional Programming Theory”
Now Publisher, Foundations and Trends in Communications and Information Theory,
vol. 11, no. 3-4, pp. 185-396, 2015.

Web Link: “https://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_
elektrotechnik_und_informationstechnik/ifn/tnt/Now%20Tutorial%20EE”
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Outline
Communications 

Theory

1. Tools for energy efficiency maximization.

2. Applications to 5G technologies.
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Energy efficiency of a point-to-point link
Communications 

Theory

The energy efficiency is defined as the system benefit-cost ratio in terms of amount of
data reliably transmitted over the energy that is required to do so.

• When transmitting with power p for in the time slot T , the amount of transmitted
information is proportional to Tf(γ(p)).

• The function f(·) is any measure of the amount of data that can be reliably sent
to the destination per unit of time (i.e. the achievable rate, throughput, ...).

• The corresponding energy consumption is T (µp+ Pc).

• µ ≥ 1 accounts for amplifier non-idealities and Pc for the power dissipated in all
other hardware components (DA/AD converters, modulation filters, signal
processing operation, ...)9.

Summing up, the energy efficiency is

EE =
f(γ(p))

µp+ Pc
[bit/Joule]

9G. Auer at al. “How much energy is needed to run a wireless network?” IEEE Wireless
Communications, vol. 18, no. 5, pp. 40-49, 2011.
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Typical shape of the EE
Communications 

Theory

Figure :
W log2(1+γ)

p+Pc

The EE is not concave and does not always increase with the transmit power
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Requirements of a valid EE
Communications 

Theory

EE =
f(γ(p))

µp+ Pc

Not all functions f result in a physically meaningful EE. The EE should fulfill the
following properties

• EE is measured in bit/Joule. So f should be measured in bit/s.

• EE(p) ≥ 0 for all p ≥ 0 ←→ f(p) ≥ 0 for all p ≥ 0

• EE(p = 0) = 0 ←→ f(0) = 0

• EE(p→∞) = 0. This means that f(p) should grow slowlyer than a line.

• Canonical choices for f(γ) are the achievable rate W log2(1 + γ), with W the
communication bandwidth, or the throughput R(1− e−γ), with R the
communication rate. Other choices are also possible.
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Energy efficiency of a communication network
Communications 

Theory

What if we have a network with K communication links? How should we combine the
EEs of each link to define the EE of the network? Several choices are possible:

1. Global Energy Efficiency

GEE =

∑K
k=1 f(γk({pk}Kk=1))∑K
k=1 µkpk + Pc,k

.

It is the ratio between the global benefit and global cost of the network, but does
not allow to tune the EE of the individual links.

2. Weighted arithmetic mean of the EEs

Sum-EE =
K∑
k=1

wk
f(γk({pk}Kk=1))

µkpk + Pc,k
.

It allows to tune the EE of the individual links by a suitable choice of the weights
(very useful in heterogeneous networks).

Alessio Zappone, Marco Di Renzo, Eduard Jorswieck: Energy-Neutral System-Level Analysis and Optimization of 5G Wireless Networks 13 / 49



Energy efficiency of a communication network
Communications 

Theory

3. Weighted geometric mean of the EEs

Prod-EE =

K∏
k=1

(
f(γk({pk}Kk=1))

µkpk + Pc,k

)wk

.

It ensures a more balanced and fair resource allocation, with no link experiencing
a very low EE.

4. Weighted minimum EE

Min-EE = min
k

(
wk

f(γk({pk}Kk=1))

µkpk + Pc,k

)
.

It is a worst-case approach. No user experiencing a very low EE, but this may
come at the expense of global performance.
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• Varying the weights we can obtain different points on the Pareto boundary.
• In general, the GEE is inside the Pareto region, because it does not directly

depend on the individual EEs, but has a clearer physical meaning from a global
perspective.

Regardless of the definition, we have to maximize ratios
so we need fractional programming!
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Questions?
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Fractional programming in wireless networks
Communications 

Theory

Literature overview:
• Fractional programming in cognitive radio systems [1, 2, 3].
• Fractional programming in OFDMA systems [4, 5, 6].
• Fractional programming in MIMO systems [7, 8, 9].

References
[1] J. Mao, G. Xie, J. Gao, and Y. Liu, “Energy efficiency optimization for cognitive radio MIMO broadcast channels,”

IEEE Communications Letters, vol. 17, no. 2, pp. 337–340, February 2013
[2] P. Ren, Y. Wang, and Q. Du, “CAD-MAC: A channel-aggregation diversity based MAC protocol for spectrum and
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237–250, February 2014
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[6] Q. Xu, X. Li, H. Ji, and X. Du, “Energy-efficient resource allocation for heterogeneous services in OFDMA downlink
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[8] D. Nguyen, L.-N. Tran, P. Pirinen, and M. Latva-aho, “Precoding for full duplex multiuser MIMO systems: Spectral
and energy efficiency maximization,” IEEE Transactions on Signal Processing, vol. 61, no. 16, pp. 4038–4050, Aug
2013

[9] A. Zappone, E. A. Jorswieck, and S. Buzzi, “Energy efficiency and interference neutralization in two-hop MIMO
interference channels,” IEEE Transactions on Signal Processing, vol. 62, no. 24, pp. 6481–6495, December 2014
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• Fractional programming in large/Massive MIMO systems [10, 11, 12, 13].

• Fractional programming in relay-assisted systems [14, 15, 16].

• Fractional programming for secure wireless communications [17, 18, 19].

References
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base station antennas,” IEEE Transactions on Wireless Communications, vol. 11, no. 9, pp. 3292–3304, September
2012

[11] Y. Hu, B. Ji, Y. Huang, F. Yu, and L. Yang, “Energy-efficiency resource allocation of very large multi-user MIMO
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• Fractional programming in CoMP systems [20, 21, 22, 23].

• Fractional programming for distributed resource allocation [24, 25, 13].
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Fractional problem
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Definition: Fractional program

Let f, g : P ⊆ Rn → R, with g(p) > 0, for all p ∈ P.

max
p

f(p)

g(p)
s.t. p ∈ P

• Maximization problems are easy to solve when the objective is concave. 10

• First-order optimality (Karush-Kuhn-Tucker conditions) is necessary and sufficient
for global optimality and well-known optimization algorithms exist.

• In general a fraction is not concave, not even assuming concave, convex, or linear
f and g.

• Is there a wider class of functions that extends the properties of concave functions
and that includes (at least some) fractional functions?

The answer is yes: Pseudo-concave and quasi-concave functions

10S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge University Press, 2004
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Generalized concavity
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Quasi-concavity and Pseudo-concavity

Let C ⊆ Rn be a convex set. Then f : C → R is quasi-concave if, for all p1,p2 ∈ C
and λ ∈ [0; 1]:

f(λp1 + (1− λ)p2) ≤ max{f(p1), f(p2)} .

Instead, f is pseudo-concave if and only if, for all p1,p2 ∈ C, it is differentiable and:

f(p2) < f(p1)⇒ ∇(f(p1))T (p2 − p1) < 0
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Strictly Concave

Strictly Pseudoconcave Concave

Pseudoconcave

Strictly Quasiconcave

Quasiconcave

KKT Necessary  
and Sufficient

KKT Necessary 
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Generalized concavity of ratios
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When is a fractional function pseudo-concave or quasi-concave?

r(p) =
f(p)

g(p)

Affine/Affine

f(p), g(p) > 0, affine. r(p) is pseudo-concave and pseudo-convex (i.e. pseudo-linear)

Concave/Affine

f(p) differentiable and concave, g(p) > 0 affine. r(p) is pseudo-concave.

Concave/Convex

f(p) ≥ 0 differentiable and concave, g(p) > 0 differentiable and convex. r(p) is
pseudo-concave. r(p) is quasi-concave if the differentiability assumption is relaxed.
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Pseudo-concave fractional problems
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Pseudo-concave maximization

f(p) ≥ 0, g(p) > 0, differentiable functions. f , concave, g, hk convex for all
k = 1, . . . ,K.

max
p

f(p)

g(p)
s.t. hk(p) ≤ 0 , ∀ k = 1, . . . ,K

• The objective is pseudo-concave.

• First-order optimality implies global optimality.

• In principle we could solve (1) from first-order optimality conditions, i.e. (roughly
speaking) by setting the gradient of the objective to zero.

• This naive approach might be numerically unstable due to the fractional form.

Fractional programming provides methods
to solve (1) by solving concave maximizations.

Alessio Zappone, Marco Di Renzo, Eduard Jorswieck: Energy-Neutral System-Level Analysis and Optimization of 5G Wireless Networks 24 / 49



Dinkelbach’s algorithm
Communications 

Theory

Consider the maximization problem, with λ ≥ 0:

max
p
{(f(p)− λg(p)) : hk(p) ≤ 0 , ∀ k = 1, . . . ,K} (1)

• We have a concave objective, since f is concave and g is convex.

• It would be nice to maximize f/g by solving concave problems like (1).

It turns out that we can!
We only have to find the right λ.

Dinkelbach’s algorithm

ε > 0; n = 0; λn = 0;
repeat

p∗n = arg max
p
{f(p)− λng(p) : hk(p) ≤ 0 , ∀ k = 1, . . . ,K};

F (λn) = f(p∗n)− λng(p∗n);

λn+1 =
f(p∗n)

g(p∗n)
;

n = n+ 1;
until F (λn) < ε
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Insights into Dinkelbach’s algorithm
Communications 

Theory

• Upon convergence we obtain a p∗ which is the global solution of the fractional
problem.

• The update rule for λ follows Newton’s method and so we have a super-linear
convergence rate

• Ideally, upon convergence we have F (λ) = 0.

Indeed, we have the following result:

Theorem [27]

Consider the function

F (λ) = max
p
{(f(p)− λg(p)) : hk(p) ≤ 0 , ∀ k = 1, . . . ,K} (2)

There exists a unique, positive λ∗ such that F (λ∗) = 0 and an optimal solution of (2)
with λ = λ∗ solves the CFP.

References
[27] W. Dinkelbach, “On nonlinear fractional programming,” Management Science, vol. 13, no. 7, pp. 492–498, March

1967
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Extensions of Dinkelbach’s algorithm
Communications 

Theory

Dinkelbach’s algorithm is not limited to concave/convex maximizations.

• Can be extended to maximize the minimum of a family of ratios, i.e.

max
p

min
1≤i≤I

fi(p)

gi(p)

• Can work also when f is not concave and/or g is not convex, but in this case
f(p)− λg(p) is not a concave function and we should globally solve a
non-concave problem in each iteration.

Instead, the case of a sum of ratios or product of ratios are in general more involved.

• Even assuming each ratio has the concave/convex structure, it is not possible to
convert the problem into concave maximizations without loss of optimality.

• In these cases we have to trade-off optimality with complexity.

Take-Home Points:

• Single-ratios and max-min problems with the concave/convex structure can be
globally solved with limited complexity

• Other cases in general require exponential complexity to be globally solved
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• 2. Applications to 5G technologies
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System setup
Communications 

Theory

We consider a heterogeneous interference network with K transmitters, M receivers,
and (possibly) one AF relay. Multiple antennas and subcarriers can be employed.

AF
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hK

g1

gM

Rx1

RxM
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Rx1

RxM
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qK
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pK
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Rx1

RxM

n1

nK

h(n1)

h(nK)

Tx1

TxK

• Shared relay in heterogeneous multi-cell systems.

• Infrastructure sharing in heterogeneous multi-cell systems.

• Heterogeneous network with small-cells.

• We can also model hardware-impaired systems and systems with imperfect
channel estimation (typical of massive MIMO).

• Full-duplex systems.

• Peer-to-peer networks (if K = M), such as device-to-device communications.

Alessio Zappone, Marco Di Renzo, Eduard Jorswieck: Energy-Neutral System-Level Analysis and Optimization of 5G Wireless Networks 29 / 49



Applications to cellular networks
Communications 

Theory

• Shared Relay (standardized in LTE-A) and infrastructure sharing. 3-cell clusters
with half-duplex relays.

• Heterogeneous small-cells. Relays are deployed to serve cell-edge users.h1
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• 2.1 Network Energy Efficiency Maximization in 5G Networks
[13]

References
[13] A. Zappone, L. Sanguinetti, G. Bacci, E. A. Jorswieck, and M. Debbah, “Energy-efficient power control: A look

at 5G wireless technologies,” IEEE Transactions on Signal Processing, vol. 64, no. 7, pp. 1668–1683, April 2016
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Problem statement
Communications 

Theory

Let us consider the maximization of the GEE:

GEE Maximization

max
p

∑K
k=1 log2(1 + γk(p))∑K

k=1 pk + Pc,k
(3a)

s.t. 0 ≤ pk ≤ Pmax,k , log2(1 + γk(p)) ≥ Rmin,k , ∀ k = 1, . . . ,K (3b)

• The SINR is expressed as γk =
αkpk

σ2
k +

∑
j 6=k pjωj,k + φkpk

.

• A non-zero φk allows modeling hardware impairments, relay systems, imperfect
channel estimation, frequency-selective channels, inter-symbol interference.

• αk, φk, ωj,k are specialized depending on the particular system under analysis.
Setting φk = 0 yields the usual SINR expression of cellular networks.

• Necessary and sufficient feasibility conditions can be derived [13] (not related to
fractional programming)

The numerator of (3a) is not concave in all transmit powers.
We can not directly use fractional programming to maximize the GEE.

This is a general problem in interference-limited networks!
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Sequential fractional programming
Communications 

Theory

How do we use fractional programming
if the numerator of our objective is not concave?

We solve a sequence of easier fractional problems
where each problem can be solved by fractional programming.

p0 p1 p2

This approach can lower the complexity, but what about its property?
Does it converge? If yes, does the limit point enjoy any optimality property?
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Sequential Programming

Let P be a maximization problem with objective r0(p) and constraints ri(p),
i = 1, . . . , I. Then, consider a sequence of Problems {Pj}j , with objective r0,j(p),
constraints ri,j(p), and solutions {p∗j}j . Assume that for any i, j it holds:

1. ri,j(p) ≤ ri(p), for all p, i = 0, . . . , I, and j.

2. ri,j(p
∗
j−1) = ri(p

∗
j−1), i = 0, . . . , I, and j.

3. ∇ri,j(p∗j−1) = ∇ri(p∗j−1), i = 0, . . . , I, and j.

This approach provides two main optimality properties:

• The solutions of the problems {Pj}j monotonically increase the original objective,
i.e. r0(p∗j ) ≥ r0(p∗j−1) for all j.

• So, we have convergence in the objective (assuming the objective is
upper-bounded on the feasible set).

• The algorithm ends when |r0(p∗j )− r0(p∗j−1)| ≤ ε.
• Upon convergence, the objective value corresponds to a first-order optimal

solution for the original problem P.

Clearly, the approach is useful provided the Problems {Pj}j can be easily solved (e.g.
because they are pseudo-concave fractional problems)
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Sequential fractional programming
Communications 

Theory

To handle the GEE maximization problem we can use the approximation:

log2(1 + γ) ≥ a log2 γ + b

wherein a = γ0
1+γ0

and b = log2(1 + γ0)− γ0
1+γ0

log2 γ0.

It can be shown that all three properties are fulfilled
but does the GEE numerator become concave?

log2(1 + γk) ≥ [ak log2 (γk) + bk]

=

ak log2 (αkpk)− ak log2

σ2
k + φkpk +

∑
j 6=k

ωj,kpj

+ bk


Are we done?

Not yet, but after the variable change p = 2q we obtain:

R̃k(q) =

ak log2 (αk) + akqk − ak log2

σ2
k + φk2qk +

∑
j 6=k

ωj,k2qj

+ bk


Concave function in all variables!
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Sequential fractional programming
Communications 

Theory

So, we can implement the sequential method by solving problems of the form:

max
q

∑K
k=1 R̃k(q)∑K

k=1 2qk + Pc,k
(4a)

s.t. 2qk ≤ Pmax,k , R̃k(q) ≥ Rmin,k , ∀ k = 1, . . . ,K (4b)

GEE maximization

Select a feasible p;
Set γk = γk(p) and compute R̃k for all k;
repeat

Solve (4) and call the solution q;
p = 2q ; γk = γk(p) and update R̃k for all k;

until convergence

Result

After each iteration the GEE value increases, and upon convergence we obtain a
first-order optimal value for the original problem.
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Extensions
Communications 

Theory

The same approach can be applied in other scenarios.

Min-EE Maximization

max
p

min
1≤k≤K

log2(1 + γk(p))

pk + Pc,k
(5a)

s.t. 0 ≤ pk ≤ Pmax,k , ∀ k = 1, . . . ,K (5b)

log2(1 + γk(p)) ≥ Rmin,k , ∀ k = 1, . . . ,K (5c)

Multi-carrier scenarios

max
p

∑K
k=1

∑N
n=1 log2(1 + γk,n(p))∑K

k=1

∑N
n=1 pk,n + Pc

(6a)

s.t.
∑N
n=1 pk,n ≤ Pmax,k , ∀ k = 1, . . . ,K (6b)∑N
n=1 log2(1 + γk,n(p)) ≥ Rmin,k , ∀ k = 1, . . . ,K (6c)
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Numerical Results: Massive MIMO system. Feasibility
Communications 

Theory

The k-th user’s rate can be upper bounded as

log2

(
1 +

αkpk
σ2
k +

∑
j 6=k pjωj,k + φkpk

)
≤ log2

(
1 +

αk
φk

)
= Rmax,k (7)

The rate constraint parameters Rmin,k have been set as a percentage of Rmax,k.
Pmax,1 =, . . . ,= Pmax,K = P

Figure : K = 5;M = 50. Probability of feasibility Pf versus P with minimum per user-rate
constraints: (a) R = 15%; (b) R = 20%; (c) R = 25%; (d) R = 30%.
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Numerical Results. Massive MIMO System. GEE
Communications 

Theory

Figure : K = 5;M = 50. GEE versus Pmax for: (a) GEE maximization with R = 20%; (b)
GEE maximization with R = 0%; (c) sum-rate maximization; (d) Maximum transmit power
allocation.
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2.2 Self-organizing Energy Efficiency Maximization in 5G Networks
[13]
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Problem formulation
Communications 

Theory

So far we have considered centralized schemes where all users cooperate to maximize a
common objective function (e.g. GEE).

What about distributed scenarios where the users are competitive?

The problem is mathematically formulated as

max
pk

log2(1 + γk(pk,p−k))

pk + Pc,k
∀k = 1, . . . ,K

s.t. pk ∈ [0;Pmax,k] , log2(1 + γk(pk,p−k)) ≥ Rmin,k ∀k = 1, . . . ,K
(8)

This problem is challenging because:

• The K individual problems are coupled through γk(pk,p−k).

• γk =
αkpk

φkpk + ωk
, with ωk = σ2

k +
∑
j 6=k ωj,kpj .

• Does (8) admit one or more equilibria? Does (8) converge?

But first of all: why do we need to consider distributed scenarios?
Because of the low feedback and complexity, which enable self-organizing networks.
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Solving the individual problems
Communications 

Theory

max
pk

log2

(
1 +

αkpk
φkpk + ωk

)
pk + Pc,k

s.t. pk ∈ [0;Pmax,k]
log2(1 + γk) ≥ Rmin,k

• The numerator is concave in pk and the denominator is affine in pk.

• We have a pseudo-concave objective.

The global solution can be obtained from first-order optimality conditions
(i.e. setting the derivative of the objective to zero and accounting for the constraints)

p∗k = min(Pmax,k,max(p̄k, Pmin,k)) ,

with p̄k the unique stationary point of the energy efficiency and

Pmin,k = (2Rmin,k − 1)
σ2
k +

∑
j 6=k ωjpj

αk − φk(2Rmin,k − 1)

The problem is unfeasible if Pmax,k < Pmin,k

Alessio Zappone, Marco Di Renzo, Eduard Jorswieck: Energy-Neutral System-Level Analysis and Optimization of 5G Wireless Networks 42 / 49



Convergence and distributed implementation
Communications 

Theory

• If each individual problem is feasible, a unique equilibrium point exists.

• The unique equilibrium can be reached by iteratively solving the individual
problems until convergence.

The proof exploits game-theoretic tools, but fractional programming plays a role.
The result holds upon showing the quasi-concavity of the individual energy efficiencies.

Distributed Power Control

For all k = 1, . . . ,K, initialize pk to feasible values.
repeat

for Each k do
Compute p∗k = min(Pmax,k,max(p̄k, Pmin,k)).

end for
until Convergence

But how do we implement this in a distributed way?
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Distributed implementation
Communications 

Theory

The k-th user’s SINR is given by

γk =
αkpk

φkpk + ωk

The problem is ωk because:

ωk = σ2
k︸︷︷︸

Equivalent noise

+
∑
j 6=k

pjωj,k︸ ︷︷ ︸
Multi-user interference

BRD algorithm

For all k = 1, . . . ,K, initialize pk to a feasible value;
repeat

for Each player k do
At receiver k, measure the SINR γk;

Compute ωk =
αkpk
γk
− φkpk.

Compute p∗k = min(Pmax,k,max(p̄k, Pmin,k)) and send it to transmitter k.
end for

until Convergence is reached
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repeat

for Each player k do
At receiver k, measure the SINR γk;

Compute ωk =
αkpk
γk
− φkpk.

Compute p∗k = min(Pmax,k,max(p̄k, Pmin,k)) and send it to transmitter k.
end for

until Convergence is reached
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Numerical Results. Centralized vs Distributed
Communications 

Theory

Figure : K = 5;M = 50. GEE versus Pmax for: (a) Centralized GEE maximization with
R = 20%; (b) Centralized GEE maximization with R = 0%; (c) Distributed GEE maximization
with R = 20%; (d) Distributed GEE maximization with R = 0%.
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Iterations for convergence
Communications 

Theory

P = −34 P = −26 P = −18 P = −10

Centralized. R = 0% 3.69 6.30 6.49 6.51

Centralized. R = 20% 3.67 6.68 6.76 6.77

Distributed. R = 0% 1.01 1.42 3.66 4.50

Distributed. R = 20% 1.01 1.42 3.67 6.71
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To summarize
Communications 

Theory

What have we seen?

• Sequential fractional programming framework for centralized power control for 5G
(and in general for interference networks).

• Self-organizing power control for 5G (and in general for interference networks).

• The framework applies to (massive) MIMO, multi/small-cells, heterogeneous
networks, device-to-device, multi-carrier, full-duplex systems.

• We have seen only power control, but the framework can be extended to optimize
other resources, e.g. beamforming vectors/matrices, receive filters, subcarrier
scheduling, also assuming statistical CSI [9, 22, 15, 16]

• Many more details and examples to be found in [26]
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To summarize
Communications 

Theory

Ongoing work

• Global optimality? Numerical evidence suggests yes [28].

• Energy efficiency in device-to-device communications [29, 30] and in systems
using physical layer security [31, 32].

• Impact of overhead transmissions (feedback, backhaul) on energy efficiency?.

• Combining different 5G techniques (e.g. resource allocation plus energy
harvesting).
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