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Cooperative Location-Aware Networks

* Problem:

— Reliable and efficient localization in harsh GPS-challenged environments with
limited infrastructures

— Current noncooperative techniques are inaccurate either due to limited
infrastructures (anchor-based) or velocity drift (inertial-based)

* Main idea:

— Exploit spatial and temporal cooperation by harnessing inter-nodes (in space) and
intra-node (in time) measurements to improve performance

* Challenges
— Complex information behavior due to joint spatial and temporal cooperation
— Efficient fusion of information from various cooperation modes
— Accuracy and reliability in the presence of mobility and uncertainty

Goals: Cooperative Location-Aware Networks
v’ theoretical analysis for determination of fundamental performance limits;
v’ the design of practical algorithms that approach such ultimate limits; and
V" experimentation, both for validation and for developing realistic statistical models
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* Part I: Foundations
— Wideband Cooperative Localization (S) v
— Cooperative Network Navigation (S) v/

* Part ll: Network Algorithms

Location Inference and Observation Selection v/

— Network Message-Passing Algorithms (S) v/

Belief Condensation Technigues (S)
— Wideband Ranging v

* Part lll: Network Operations

— Non-cooperative Network Power Allocation

Cooperative Network Power Allocation

Sparsity Property of Localization (S) v/
Network Scheduling (S)
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* Part IV: Network Experimentations
— Channel Measurements (S) and Ranging v

— Coopertive Localization v/

— Diversity Navigation v/

* Part V: Example Applications
— Sensor Radar Networks v/

— Semipassive Tags v/
— RFID Systems

¢ Concluding Remarks v/

* References v/




WIDEBAND COOPERATIVE
LOCALIZATION

Wideband Cooperative Localization

High-accuracy location-awareness is important for wireless applications

Wideband transmission

. X . . GPS signals
— Precise range measurements due to fine time resolution & o
— Robustness in dense, harsh environments
— Simultaneous communication & ranging /

Cooperative techniques \
accuracy

— Measurements are made between agents improved @
low accuracy \ o
— Agents jointly find spatial topology of the network

— Dramatic increase in coverage, accuracy, and
robustness, especially infrastructure is limited o

Our contributions:
— Determine the fundamental limits of cooperative localization accuracy
— Introduce a geometric interpretation for the localization information
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* Problem formulation

Problem Formulation

* Cooperative Localization Systems
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our work most previous work

Not fundamental — specific signal metric may
eliminate relevant localization information
inherent in the received waveforms

[ What are the fundamental limits of wideband cooperative localization? ]




Problem Formulation

* 2-D Network Setting
— N, agents (set NV, ): position px = [z yx]T (k € Na) unknown
[2; y]T (G €M)

— N, anchors (set AV, ): position p;

* Measurement model
— Received waveform at agent k € N, from node j € NV, UM, \{k}
known wideband waveform

number of multipath
Ly;
! !
Tkj(t) = Za,(w) S(t - Tlij)) + Zk]‘(t)
=7 |

delay white Gaussian noise

amplitude

— Relationship between delays and NLOS biases
n_ 1 !
7y = <[ I = pyll + )]

speed of propagation positive NLOS biases
( LOS signals, b;lj) =0)

Problem Formulation

* Parameters
T T T T 17T
6=[P" kT k] - KL ]
— Agents’ positions P =[ pl p3 PX, }T parameters of interest
— Multipath parameters & for agent k include
. . 1
« Biases by NLOS propagation {bL’}, JjEMN UM} For LOS signals bﬁcj) =0
0. are eliminated
{a;“?, jeN, UNb}

* Multipath amplitudes

* Received signal vector
— Received waveforms — 7%;(t) T—=> T

— Vector r is composed by all the ry;

* Localization problem: To estimate # based on observation r

Karhunen-Loéve expansion

.



Fisher Information Matrix

* Bayesian Fisher Information Matrix (FIM)
2

0
Jo=E,p¢ {7W1nf(r, 0)}

* Log joint probability function can be factorized as

I fe,0) = > > [ f(l0) + nf(misP)] + > D0 [Inf(r18) + In f(ris[P)]
keN. jEN, kEN. jeEN\{k}

L ) L )
T T

anchor cooperation

where  f(ry;|0) is the likelihood of the measurement, and f(x;|P) is the
conditional pdf of channel parameters &&;.

* FIM decomposed as Jo = J5 +J§
/7 ™~

anchor cooperation

Performance Metric

* Squared position error bound (SPEB)
— Metric of localization accuracy

— Hybrid Cramer-Rao bound multipath parameters

B {(0-0)0 -0} = 5" o= [P &l &E o eR )
A ~ /
= Ero {(P-P)P-P)T} = [35'],

— [J;l}P denotes the square submatrix on the diagonal of J;' corresponding to P

— Mean squared position error of agent k
Evo {[Px — Pel®} > tr{ [J;l}pk } =P(pr)

where [J;l}pk isa 2 x 2 submatrix on the diagonal of J,*

* SPEB is defined as

(P = {37, } 3




Equivalent Fisher Information

* Remarks:

— FIM J is a matrix of high dimensions; however, for
SPEB evaluation only [J5'],, is of interest

— Use Schur’s complement to reduce the dimension of the FIM

* Equivalent Fisher information matrix (EFIM)

Jo
o _[la] B _ | B
Original FIM J97|:BT C] for 97{02} N
BT
— EFIM [Je(el) = A BC’lBT] )
| nf o !
— It retains all necessary information to derive the —
information inequality for 6, inverse
—— F—N____
J. !
1
J,t :

Qutline

* Performance bounds




EFIM for Cooperative Localization

* Result: When prior knowledge of the agents’ position is not available, the
EFIM for the agents’ positions is a 2N, x 2N, matrix:

FIM: Jo=J5 +J§ —> EFIM: J.(P)=J2+J¢
where J4 and JS are 2N, x 2N, matrices that characterize the contribution

from anchors and cooperation, respectively, o
X
I3 (p1) A N
’ Iee)= ).
T2 (p2) e \Pk
JA = o (P2 ) jeNy <
A . . .
J¢ (pw.) Ranging information
Z Cl.] 701,2 ce *Cl,Nﬂ
jeN (1)
—Cip2 > Gy -Can,
J° = jEN {2}
7CI,N_.~ 7CZ,N_,~ Z CNM]'
JENNING)

[ Cr;=Cjk :[()\kj + Aji) 'L(%,j)]]

Ranging Information

* EFIM from anchors to agent &

IEPE) = D Mg Ie(6n)
FEND
RII

— Canonical form: weighted sum of RDM from individual anchors
— Each anchor provides “one-dimensional” information since RDM has rank 1

sum over anchors 2 X2 RDM

Geometric Interpretation




Ranging Information Intensity

* Result: When channel knowledge is not available, the RIl of LOS signals is
determined by the first contiguous-cluster of the signals:

87232 SNR of the first path
)\kj = 7ﬂ (1 - ij) . SNR,(:J> — P

2
effective bandwidth / ¢ AN
8= (f f2. S(f)Qdf)l/Q Xk; € [0,1] path-overlap coefficient:

determined ONLY by the NLOS biases
— Special case: if the first path is resolvable then

87‘[’2ﬂ2
T SNRI(clj) (xxj =0)

1st path not overlap
\ not overlap
| l Ana A
N V v
H_J %/—/ — ~— _/
first contiguous-cluster not useful not useful
LOS signal LOS signal

* Geometric Interpretation




Geometric Interpretation

* Information Ellipse of EFIM

— Eigen-decomposition

-~ w 0 T | cos¥ —sind
Je(p) = Uy { 0 ]Uﬂ Uy = { sind  cos¥ }

7

— Setof points {y e R? : y' I 'y =1}

* Ellipse evolution:

- \/ﬁv \/777 9
— Rl can be viewed as a degenerate
information ellipse

Geometric Interpretation

* Two-agent cooperation with Sis = A2 J,(¢12)
— EFIM for agent 1
Jo(x1) = I (x1) + &2 S12

where 1 projected position error

&1z = -
L Ao uf ) [8(x0)] " uf

— Effective intensity &5 A2 (&12 < 1)

— Agent -> anchor when projected error diminishes o=

* More agents in cooperation S

Tolxp) m I2(xk)+ Y &Sy

JENa\{k}




Geometric Interpretation

* Result: The SPEB is coordinate system independent.

-1
0 1 1
Pp*)=trl | ¥ =4
) r{[o 77} } w
where P* is the agent’s position in the new coordinate system that is rotated
by v .

P(p)

— Remark: The localization information is decoupled in the new coordinate system.

* Result: An agent has EFIM Je(p) = F(1,n,9) and corresponding SPEB P(p) If
the agent obtains Rl F(v,0,¢) from a new anchor, then the agent's SPEB
becomes

1 p+n+v
Pp)==+=-= -
®) oo pn v [n+ (p—n)sin®(¢ —9)]

— Minimum SPEB for a fixed Rll is

Hﬁn P(p) = prntv

n(n+v) o=dEm/2

Geometric Interpretation

[ Overall 2N, x 2N, EFIM Jo(P) = J2 +J¢ ]

Comment:

e Cooperative information for
localization is coupled
® Vkm cannot to be fully utilized
e The strength is weighed by
Xiem € [0,1]

Azo Ellipses denote localization information.




Numerical Example

* Agents randomly locate in an area of 20 m by 20 m

» Two set of anchor deployments (red/magenta)

* SPEB decreases at the rate of the number of agents

10

*

<

-10

E {SPEB} (m?)

L4 = = =8 Anchors
- @ = Non-coop

~ o]

2 10

30
Number of agents

¢ Conclusion

Qutline
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Conclusion

* Developed a framework to study wideband cooperative opportunistic
location-aware networks, and determined their localization accuracy

Introduced the notions of equivalent Fisher information and ranging
information, and unified the localization information from anchors and that
from agents in a canonical form

Provided a geometric interpretation of the localization information in
cooperative networks, and used information ellipse for localization
information to characterize the cooperation benefits
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BACKUP SLIDES

Ranging Information

* Ranging Information
— Basic building block of the EFIM
— Definition: a 2 x 2 matrix of the form X .J,(¢)
— ) c Rt is called the ranging information intensity (RIl)
— J.(¢) is called the ranging direction matrix (RDM), given by

52 in
3(6) = u(@)u(e)" = | 80 oo
where u(¢) = [cos¢ sing]T

The RDM is one-dimensional along the direction of ¢ , exactly one non-zero
eigenvalue equal to 1 with corresponding eigenvector u(¢) = [cos¢ sing]T

12



Geometric Interpretation

* Information Ellipse — EFIM
— Eigen-decomposition

0
L= | )] Ul

— Set of points x € R? satisfying xTJ.x=1

13



COOPERATIVE NETWORK
NAVIGATION

Network Navigation

* Challenges in wireless localization
— GPS-challenged and dynamic environments
— High accuracy and reliability
— Time-critical operation and resource constraints
— Heterogeneous information fusion

Agentl ----

——————

Time 1 Time2 .-~ Time3




Network Navigation

* Network navigation: exploit both spatial and temporal cooperation
— Spatial cooperation: inter-node measurements (e.g., ranges)
— Temporal cooperation: intra-node measurements (e.g., accelerations)

— Dramatic increase in coverage, accuracy, and robustness

* Contributions
— develop a theoretical framework for network navigation

— characterize the information behavior and benefit of joint cooperation

QOutline

* Background

* System Model

* EFIM for Network Navigation

* Navigation Information Evolution
* Numerical Example

e Conclusion




System Model

(n—1)
* Network model
— N, agentsand Ny, anchors \:'m
k’;?

— Discrete time instants n € {1,2,...,N}  z;, M@¥"-Cs--

. (n) . kJ (n)
— Node positional state x;’  2-D position i

* Measurements

— Inter-node: zi") with parameter n(") (e.g., wireless channel)  distance

— Intra-node: =\ with parameter n(") (e.g., clock drift) velocity
D M (Nt (N) 9T Kkycky = [Xby - X, ]
* Parameters 9= [Xl;Na KN, o XpLy, M;NJ ‘ (tiita) _ [ o(t1) (t2)
Xkyika = [Xklzlcg chl:kz}

deterministic

* Likelihood function

N
f(z|0) = H H |: H f (Z(kr;”xﬁc") _ x§."'),lc§£»)) - f (ZLZ)|X§@") _ X;nil)a K;!,Z))}
n=1keN, - jENLUN,\{k}
inter-node intra-node

Localization Performance Metric

¢ Location inference from inter-node and intra-node measurements

— Performance bound for positional errors

EZ{(Sci’” _ X](Cn)) Z(m) _ n) } = [T

k

— Fisher information matrix (FIM) for @ = [x{ w{(3f .. x{VF R%{\]’\;:]T
J E i 1 ) ™~ nuisance parameters
" { 0007 ™" H}

=1
— [J; } (n : square submatrix on the diagonal corresp. to x(") o

* Equivalent Fisher information

— Original FIM Jg = [ B } for parameter 6 = [}

Bf C 2

— EFIM J.(6,) = A -BC'Bf

— Reduce the matrix dimension without loss of relevant information
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* Background

* System Model

EFIM for Network Navigation
* Navigation Information Evolution
* Numerical Example

* Conclusion

EFIM for Network Navigation

* Theorem: The EFIM for the agents’ positions x = xfj@:) from time 1 to N is

given by
Je(x) = T2 (x) + Jo(x)

— J%(x) is the EFIM corresponding to spatial cooperation

J3(x) = diag{SM, 8@ .. s}

in which — 2x2
s s s
jeNON 1y ' e
-siy" > s -s{,
s — JENLUNL\{2}
s s s oos

JENZUNL\{Na}

— Remarks:
« J3(x) has block-diagonal structure due to independence in time

¢ Each component S,(J]”.) associated with inter-node measurement




EFIM for Network Navigation

* Theorem: (cont’)

— Ji(x) is the EFIM corresponding to temporal cooperation

T2 —_T(2)
—T7@ 7@ 471G i G))
—T®) TG 4 T@
Je(x) = .

TWN-1) L T(N) V)
—_TN) TN)

in which T = diag{T{", T",..., T{}
2x2
— Remarks
« Ji(x) has block tri-diagonal structure
« T has block-diagonal structure

¢ Each component TEC”) associated with intra-node measurement

EFIM for NLN

* Theorem: The EFIM for the agents’ positions x = x§1]\1,\'> from time 1 to N is

Je(x) = T3 (x) + T (x)

spatial + temporal

JENZUNG\{N.}

)
1 T 1@
| 7@ @ 47O _T®)
H —T®) TG) 4 T
J3(x) = diag{S®, 8@, ... s} I = . _
E TIN=1) L (V) _p(N)
. ' _T() W)
Time indep. | corr
________________________________________________ s
Space each bIockl corr. | indep. 1each block
:
i
s -s{y -s :
JENUN\{1} o !
I s |
n) _ ENAUNL\{2 H
s = , ! , 5 T™ = diag{T{", TS",..., T{}
. : 1
-sid -sind S |
:

_

2 x 2 building block
inter-node meas. intra-node meas.




Building Blocks

* Spatial measurement (inter-node distance)

S =AM 3 (6)

- )\,(C’;) is the ranging information intensity

— Example: wideband transmission
B : effective bandwidth

8,/.[.262 ) i
Mj =~ (1~ xi;) - SNR{Y SNR(Y: SNR of first path
¢ Xk; - path-overlap coefficient
on [0, 1]

* Temporal measurement (intra-node velocity)
T = N 380 + v 384 +7/2)

- /\g}c) and (%) are the amplitude and direction information intensities

4 N
Spatial and Temporal Cooperation

Fundamental Limits Inference Algorithms

Cooperation in Space

e

Fisher Information Matrix Bayesian Network

o J




Spatial and Temporal Cooperation

Fundamental Limits Inference Algorithms

Cooperation in Space and Time

Fisher Information Matrix Bayesian Network

-
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Navigation Information Evolution

* Filtering application: to infer the state at time N based on the observations
up to time N ; the performance is characterized by J,(x®)

* The block-tri-diagonal structure of the EFIM  J.(x™"™)) allows to derive the
EFIM J,(x(™) through a recursion J,(x3M) — J (xZN)) - ... = J (x())

SO L T® —T®
_7® S@ L 7@ 4 7® —_T®
—T® SB) L p® 4 7@
Io(xM) = A
SIN=1) L p(N=1) 4 m(N) _m(@)
I \(C2p] sV 4 (V)
e ++ T® _7®
—_T® s®) 4 G 4 7@
JC(X(ZIN)> _ . .
§(N=1) L p(N=1) 4 m(N) _(V)
_®) sV 4 (V) ]
\ carry-over information

Navigation Information Evolution

* Proposition: The carry-over information can be recursively obtained as
T(?L) _ T(n) _ T(n) <S(n—l) + T(n—l) + rr(n))71 T(n)
with T® .= 0o

* The spatial cooperation s=1 is highly-coupled inference, i.e., the agents’
positions after spatial cooperation are correlated

* In distributed networks, each agent only obtains its own position estimate
after spatial cooperation; the accuracy of each agent is characterized by its
individual EFIM




Navigation Information Evolution

* Under the distributed condition, ignoring spatial coupling

s(=1) 4 q(n—1) /
S = {[(Smfl) + ’f‘<"*1>)_1]x2"71>}_1

Individual EFIM after spatial coop.

* Proposition: The carry-over information in distributed networks can be
approximated as
T = ding{ T, T, .. T}
where

q(n n n) /q(n—1 n)\—1m(n
2 G ) 1)

Geometric Interpretation: Spatial

* EFIM from anchors to agent & H
1
IER) = Mg Tulory) : 0
JENY \
* Information ellipse {y eR?:ytJ.y=1} ~77°°° F
. . B )
* Two-agent cooperation with S;, = X5 J.(¢412) i
i
— EFIM for agent 1 o'
Je(x1) = T2 (x1) + £12S10
where 1 projected position error M) ==
12 = — Jg (%2 !
1 + )\12 utTﬁm [Jé(xz)} 112)12 II ’
voo
T Agent 2

— Effective intensity &0 A (§12 < 1)

* More agents in cooperation \‘;m
I
L
Jo(xr) m I8 (xk)+ Y &Sk '\\
JEN\{k} o X7 heentl




Geometric Interpretation: Temporal

* Carry-over information for individual agent
T =S ) )
S(n—1)y—1 —17-1
=[50 ()

— “Harmonic mean” of the information from previous time and from intra-node
measurement

* Effective information

(n)
~ Tlc -
— T < T withequality S— diag{oo, 0} ‘,/’— TNy
AN
— T =S withequality T — diag{oo, o0} LIS SN
g b II/ \\ f
n "
1 \\ //I
* Intra-node measurement is speed T = \J.(¢) VoeseA
then - RSP
T=6T sy Time 2
&y = (1+/\uLS_1 uy) ! @
L ‘ Time 1

Information Evolution

* Spatial cooperation
— Information increases in the direction connecting the agents

— Cooperative information degrades due to position uncertainty

* Temporal cooperation

— Combination of measurement information and previous localization information

\_ o Time n-1 ° Time n )
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* Background

* System Model

* EFIM for Network Navigation

* Navigation Information Evolution
* Numerical Example

* Conclusion

Numerical Example

* Agents placed randomly in a 20 m by 20 m area and follow random walks

* Anchors provide a localization accuracy of 2 m?

4 agents

Inter- and intra-node distance error variances are 0.2 m?

Time step 3

—e— Spatial Cooperation
—w— Temporal Cooperation
—+— Joint Cooperation

—o— Spatial Cooperation
—w— Temporal Cooperation
—+— Joint Cooperation

Average SPEB [m?]
Average SPEB [m?]

\\¥

0.5 05

2 4 6 8
Time steps

4

6 8 10
Number of nodes
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Background

System Model

EFIM for Network Navigation
Navigation Information Evolution
Numerical Example

Conclusion

Conclusion

Established a framework for network navigation to determine the
fundamental limits of navigation accuracy

Derived the navigation information by the EFI analysis, and showed that
— it can be decomposed as the sum of the information corresponding to spatial and
temporal cooperation

— each part can be further decomposed into basic building blocks associated with
each measurement

Introduced the notion of carry-over information, and characterized the
information evolution and cooperation benefit in distributed navigation
networks
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LOCATION INFERENCE AND
OBSERVATION SELECTION

Location inference

AN

Measurements

, ) — o
[ | Location Estimate
“ Observation “ Location
_
\ Space ‘\ Estimator
\ | N T /
Prior
Information

The purpose of location-aware networks is to determine the unknown positions of
agents based on intra-node and inter-node measurements (e.g., IMU and RMU)
and prior information (e.g., environment and mobility)




Cycle of cooperative location-aware networks

Environmental Social Networking

Monitoring Logistics

Navigation Safety & Rescue

Data Fusion
Inter-nodes measurements

[waveform, ranging, direction]

Cooperative
Location-Aware
Networks

Spatio-temporal
Cooperation
[localization &

tracking] Intra-node measurements

[acceleration, angular velocity,
Doppler effects, orientation]

Mobility &
Perceptual Environmental
Models Information
Statistical Planning &
Inference Infrastructure

\ M.Z.Win et al., “Network Localization and Navigation via Cooperation,” IEEE Communications Magazine, May 2011 /

Classification

* Anchor-based: some nodes in known position (anchors/beacons); targets/
agents estimate their position through measures with anchors (direct/
single-hop, indirect/multi-hop) and other agents (cooperation)

* Anchor-free: all nodes in unknown position, only relative coordinates can
be obtained

Depending on the type of measurements used...
Range-based Angle-based Proximity-based
b M

... and others like scene-based, optical, inertial, etc.




Classification based on technology

Local
WSN/RFID

* None of the technologies can guarantee global coverage and high-accuracy
* Integration for seamless localization
*  UWAB-based localization (submetric localization)

Technology W easurem ent technique A ccurac Y v <
Ges TooA To20m

Galileo To0A 15m

A-Gnss To0A < sm

Cellular €070 /0TDOA 50-500m

Cellular cenn Cell size

WLAN RSS - Fingerprinting 15m

WS (zigee) RSS 110m

WSN (UWB)  TOA/TDOA/AOA 0.11m

ReID 3 c tivity rang

1:5m

UWB-based localization

* UWB technology offers the potential of achieving this high ranging
accuracy through TOA measurements also in harsh environments due to
its ability to resolve multipath and penetrate obstacles.

Worldwide UWB Emission Masks
Band EIRP Mitigation technique
At Receiver China
Leading edge 4248 GHz 413 dBm/MHz DAA
. 00 969% ~ Lack point 63-8.9 GHz —41.3 dBm/MHz No mitigation
At Transmitter
Europe
3.1-4.8 GHz 413 dBm/MHz LDC or DAA
2.7-3.4 GHz ~70 dBm/MHz No mitigation
3.4-3.8 GHz 80 dBm/MHz No mitigation
3.4-6 GHz ~70 dBm/MHz No mitigation
6-8.5GHz 413 dBm/MHz No mitigation
8.5-9 GHz 413 dBm/MHz. DAA
_300 - Time in
0 6104 12208 18312 24416 3052 36624 42728 48832 5403 6104| | Japan
34-48GHz 413 dBm/MHz. DAA
4.8-7.25 GHz, 70 dBm/MHz No mitigation
725-1025GHz 413 dBm/MHz No mitigation
Korea
° H | w m | Xi H 3.1-4.8 GHz —41.3 dBm/MHz LDC or DAA
UWB with low co ple ty' cost and size 725-1025GHz 413 dBm/MHz No mitigation
H . United States
* Existence of standards IEEE802.15.4a and 4f: L obet s Nomition

with ranging accuracy
M. Z. Win and R. A. Scholtz, “On the energy capture of ultra-wide bandwidth signals in dense multipath environments,” IEEE Commun.
Lett., Sep. 1998 - S. Gezici et al., “Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks,” IEEE
Signal Process. Mag., Jul. 2005.




-
Ingredients for localization-awareness

b= [ Position-Based Applications ‘ l“v

e - / -
Robust
S s w/o memory
!é'é Range-, angle-, proximity-based

w/o cooperation

E T ‘ Algorithms ‘

Error sources
Uncertainty

=

RSSI, ToA, TDOA, A0A, ...

‘ Technologies ‘

Localization requirements

Accuracy:  (e.g., Root Mean Squared Error of location estimation averaged
in space and time). Localization error e(p) = ||p — p||

Outage: fraction of times for which the target precision is not reached.
Localization error outage (LEO) probability” Po = P {e(p) > e}

Refresh rate, Robustness, Coverage

The chosen technology/algorithm should satisfy all and it is environment
dependent (e.g., indoor/ outdoor, office, home, open-space,...)

Design: which nodes’ density is required to reach a target performance
(accuracy, outage, refresh-rate) in different kinds of environments?

“The concept of LEO is driven by that of bit error outage (BEO) in communications, A.Conti et al., “Bit error outage for
diversity reception in shadowing environment,” IEEE Comm. Lett., Jan. 2003




Location estimation

* To determine the location of objects based on observations (i.e.,
measurements) is a “classical” estimation problem

* Several approaches for the estimation of state/parameter X from
observation Z affected by noise are applicable to localization

— X unknown deterministic: Non-Bayesian Estimation (e.g., least
square, maximum likelihood)

—X unknown RV: Bayesian Estimation (e.g., minimum mean square
error, maximum a posteriori)

— Approximate Inference (e.g., based on Kullback-Leibler divergence)

N
Navigation and Localization algorithms

Ay

* Beliefs evolution in Bayesian inference o ‘
D rob[x(t) | x(t-1)]
State vector at time t
Mobility model
Intra- & inter-node meas. From time 1 to t-1 /

(i) prediction: Fae® 20Dy = /f(:c(tfl)\z(l:tfl)) f@®|et=1) de—D
(i) correction:  f(xV|z11)) oc f(@ ]2 (20 |2M))
FE12Y) = [zl ®) [ (zflle®) |

Probabil
Intra- & inter-node measurement model at time t )

The quality of range information affects the localization accuracy depending on network
intrinsic properties, signal features, and signal processing techniques




Inference through Factor Graph

If fxjz(z|2) can be factorized and then described through factor
graphs and message passing algorithms (e.g., sum-product)

L -1 o0 (7) L -1y (+) L -1 0 (- -1 5o (- Ly (4=1)_ (0|
l.'" _x®( Hpg=n_xo (") Hopge=n_x o () /I,,J —xp() /?5 _x(

X;” l Xé‘) aol I pnode

s 3 =
. E
P5—4 B
A\ v L)
ok node 4 i
“E
\ \
%) 72N\
l i \CE =7 gnokes
#A’A“«h:‘“(‘) Hix (0 _p (

— —) »
_— \ / 77/‘ 70 > ‘LT’PN"E mneded
‘

H. Wymeersch, J.Lien, M.Win, “Cooperative Localization in Wireless Networks,“ Proceedings of the IEEE, Feb. 2009

From theoretical limits

The performance of network localization and navigation depends
mainly on two factors:

* the geometric configuration of the system, and

e the quality of the waveform and range measurements

The characterization of each possible link, by means of ranging and
waveform measurements, enables the system designer to
understand how to

* harness environmental knowledge,

* identify LOS and NLOS conditions,

* take advantage of cooperation, and

* choose cooperating nodes.

M.Z.Win et al., “Network Localization and Navigation via Cooperation,” IEEE Communications Magazine, May 2011




Cooperation

* Cooperation is an emerging paradigm for wireless communications and
location-aware networks; e.g., at the PHY layer is an efficient method to
improve the performance and extend the coverage

* The connectivity and cooperation diversity achieved depend on channel
conditions in each link

For the design of cooperative wireless networks carefully

characterize the wireless channels associated with all links.

Cooperation in localization

* To extend coverage of the localization system (through multi-hop)

* To increase the number of visible anchors (e.g., an agent can be virtual
anchor for another - iterative approach)
anchor anchor

anchor . anchor

1
\ / \ anchor . anchor
\
T o\
v
\7

Step n Step n+1




Harnessing environmental information

* The ranging error degrades the performance of localization.

* When a priori information of the environment topology is available, we can harness
such information to refine ranging and position estimates.

* Three-step procedure, regardless of the particular range-based localization
algorithm used:

//’

(i)  Initial position estimate
(ii) Range error mitigation

(iii) Position refinement

When no a priori information on the environment topology is available, such
condition can be determined by analyzing the received waveform

Choice of features for NLOS detection

* Features are extracted from the received waveform v(t) observed within the
interval T under a particular channel condition. Examples are

o [fT(t—rm)ﬁ |v(t)|2dt]l/2
e Jr lv(t)|2 dt

* Temporal dispersion (RMS delay spread)

(higher for NLOS)
Jptlv(t)|? dt
mean excess delay T =L -7
" [ ()2t
p
Decide : LOS ff Tms < Ar
NLOS if 7yps > A
1 4
* Kurtosis K= W A (lv(@®)] — pyo))* dt
(higher for LOS)

-
Decide : NS = /\Kw
LOS i K>\
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Selection of Representative Observations

Harsh propagation
environments

Subset Selection

Ideal environments

Number of processed measurements

Localization Error

S. Bartoletti et al., “Blind Selection of Representative Observations for Sensor Radar Networks,” IEEE Trans. On
Vevhicular Technol., Apr. 2015

Observations Selection in a
Sensor Radar Network Scenario

10
s
o] Ps Pn+1
8 o P11 o g ®
P3 P9 Pis| 4
T gl P e, ;
6 0 P oPs o ,’/
o Y 777777777777777 1 llp ’///
. (o
4 o : A\
5 o p7 v
= Po \
P ) @ e
2t © ° P ®
P1 = Pn-1
[THIHIIT
% 2 4 6 8 10

Scenario including: clutter, multipath, excess delay, obstruction loss
and excess delay
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Localization with Observation Selection:
the idea

Observation Selection
va(t) Pre-filtering and rp(t) Selection h(rp) Subset TOA 7P (P) Localization P
[P| clutter removal |P| feature |P| selection Estimator algorithm

Samples characterization for energy detection based ranging

(g+1)Tawen+pTy

N, Ly-1
SO S S N () PO R

ij
p=0 1=0 qTawen+pTy

(@)

f"’(Q):W PMF Fy(@) =) fij(@) CDF
k=0 %ij

q<z
Np—1
iy = Y afij(a) 1-st moment
q=0
- th central t
W= 3" (g, fi(g)  th central momen
q=0

/-

,‘\\

Localization with Observation Selection:
signal features

Observation Selection
v (t) Pre-filtering and rp(t) Selection h(rp) Subset rp (1) TOA 7P (P) ‘ Localization P
[P| clutter removal |P| feature |P| selection | Pt| Estimator [P ‘ algorithm

Temporal dispersion features Amplitude dispersion features

2 _ @2 . M;; = maxe ! maximum value
i = My variance ! sample variance
IQR;; = F,;'(0.75) — F,;'(0.25) interquartile range Noo1 | Mot >
4 : | _(k
Y ( <2>>2 kurtosis =0 k=0
Hij
(3) e 2(@) i =(@) |
1) rij = |[maxe;’’ —mine; Sample range
Xij Lj skewness ” q 4 q 4 P | E
( (2)> sample skewness
\ Hij No—1 [(q) No-1-(a)\]?
o Zq:lo [‘if - 1\%1) (Zk;l) ‘L,l )]
i = :

3
Ny (s3)*
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Localization Error Qutage
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Piro
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Fig. 9.

L

10 15 20 25 30 35 40 45 >50 55 60 65

LEO as a function of L = 1,2, ..., Nobs for e, = 1 m, with (solid) and
without (dashed) walls, for the cases (A) h(€;;) = o?j. (B) h(€i;) = Kij,
and (C) h(€;;) = M;;. The case (D) represents the random choice of L
observations. The case (E) refers to the non-blind case h(€;;) = e;;.
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Localization Error Qutage
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D: random choice of L observations
E: non-blind case
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NETWORK MESSAGE-PASSING
ALGORITHMS

-
Two Non-Trivial Cases

* One mobile agent

* Multiple static agents




Multiple Static Agents
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Cooperative Localization Process
* Cooperative localization
— 3anchors
— 2 agents 8
70
X
» Cooperation between sl s
— Pairs of anchors and single
agents 50
X
— Two agents 4 4
& 40
= X1
301
X5
20
X2
10+
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Cooperative Localization Process

Cooperative localization
— Agent 1 and Anchors 3, 4

Ranging between Agt 1 and Anc 3
— Likelihood f(d13|x1)

Ranging between Agt 1 and Anc 4
— Likelihood f(C/l\14|X1)

Location belief of Agt 1
b (x1) = f(x1|diz, da)
o f(x1|diz) x f(xo|dys)

Cooperative Localization Process

Cooperative localization
— Agent 2 and Anchors 4, 5

Ranging between Agt 2 and Anc 4
— Likelihood f(d24|X2)

Ranging between Agt 2 and Anc 5
— Likelihood f(da5|x2)

Location belief of Agt 2 30k
b (x2) = f(x2|d24, d2s)
o f(xz|dz) X f(x2|das)

10r

80




Cooperative Localization Process

Cooperative localization
— Agent 1 and Agent 2

Ranging between Agt 1 and Agt 2
— Likelihood: f(d21|X17X2)

Information from Agt 1 to Agt 2

/ F (o1, %2)b (x1)d3cr

Meters
8

Location belief of Agt 2

— Previous: b(l)(x2) 20¢
— Updated: b (xy) Wl
> (day |x1, x2)bD (%1 )dx
b(l)(xz)/f(d21|xhXz)b(l)(xl)dxl | ‘/M“ T
GO 10 20 30 40 50 60 70

Meters

80

Cooperative Localization Process

Cooperative localization
— Agent 1 and Agent 2

80

Ranging between Agt 1 and Agt 2 ol ~
— Likelihood: f(d12|x1,X2) . X3
60 /f(dAu\x],m)b“)(xz)dxz )
Information from Agt 2 to Agt 1 %
- ;Aﬁb b3 (x1)
/f(d12|X1, Xz)b(l)(xz)dxz 8 0 o @®
= X1
Location belief of Agt 2 I o xs ° dra
— Previous: b(l)(xl) 2°’b(1)(x23®§¥///
=— X2
— Updated: b(z)(xl) o
b(l)(xl)/f(dAlﬂXl, x)bV(xo)dxe |\ / ‘

80




Algorithm Desi

gn

* Developed concept of Space-Time Network Factor Graph

A

B
Time slot 2

Time slot 1

2

4
-

-

AN'

Yol
Time slot 2

AN
-

O»o

B

Time slot 1

W=
N\

s
s

« Underlying frameworks: Bayesian Inference, graphical models,
statistics, machine learning

Case Study: Advantages of Qur Approach

¢ Indoor environment, covers 100m x 100m area, 13 anchors, 100 agents

* Nodes can communicate within 20m range, using UWB Eegend
peer-to-peer transmission (experiment at MIT) o Anchor
¢ Underlying frameworks: Bayesian Inference, graphical ° Agent (true position)
models, statistics, machine learning o Agent (estimated position)
e Lines denote errors
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Iteration Advantage

10cm

node index

1cm

iteration

References

* H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless
networks,” Proc. IEEE, vol. 97, no. 2, pp. 427-450, Feb. 2009.

* M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, and D. Dardari, “Network
localization and navigation via cooperation,” IEEE Commun. Mag., vol. 49, no. 5, pp.
56-62, May 2011.




WIDEBAND RANGING

Distance estimation (ranging)

* Ranging is the technique employed by two nodes in the network to
determine the physical distance between them.

* Ranging techniques significantly affect localization accuracy and system

complexity.
&
P

Node A O% Node B

* Two most widely used ranging techniques are
- Received Signal Strength-based (RSS-based)

Anchor 2

—————————— ® (x5, v3)
Anchor 3

- Time-based (with variants)

* Possibility of heterogeneous techniques depending on complexity

D.Dardari, A.Conti, U.Ferner, A.Giorgetti, M.Z.Win, “Ranging with Ultrawide Bandwidth Signals in
Multipath Environments,” Proceedings of the IEEE, Feb. 2009




RSS-based Ranging

Pk (dBm) Pr (dBm)

Deterministic
Channel
(unrealistic)

d

transmitted signal strength and the RSS into a range estimate.

to poorly correlate with distance

Random
channel

d

Theoretical and empirical models are used to translate the difference between the

Propagation effects (refraction, reflection, shadowing, and multipath) cause the attenuation

10,00

15.00

2000 25.00 00

Inaccurate distance estimates

RSS! (dbm)

Time synch between nodes is not required

Time-based ranging measurements

* Time-of-flight 7 =d/c

(e.g., 1 ns corresponds to 30 cm)

Accomplished by using (TOA/TDOA stand for time/time difference-of-arrival):

One-way TOA Two-way TOA TDOA many-1

(perfect synch req.) (e.g., GPS)

O
O O T-dp””‘ I.— -b;
S e
T =12 —t1 TR =277 +74 ) @ Tf e

TDOA 1-many

O

1
‘e

l

t2.B

3




Time-based ranging

* Distance between two nodes is estimated from measurements on propagation
delay of e.m. waves (light speed c~ 3-10%m/s)

* Applicable if nodes can measure the time between events 2 TOA/TDOA

room F1
s
0 b s
i

Time-of-flight 75 =d/c e

Amplitude [v]

Error sources \ e

* Clock drift (within node) 1 e

Time [ns]

* Propagation: multipath, clutter, excess delay, blockage, LOS/NLOS

* Interference: narrowband interference (NBI), wideband interference (WBI),
multi-user interference (MUI) )

.

Multipath propagation and excess delay |

10

é o)

Ps

-

8 % P 5 direct path (DP), LOS
g = rgrrrd - Pgr DP excess delay, non-DP, NLOS
6 . P10 oPs - DP blockage, non-DP, NLOS
0];55

P12
[THIHIIT [

0 2 4 6 8 10

Narrowband systems are often unable to resolve paths in cluttered environments.

Wideband systems can resolve paths, but if they are dense it is hard to detect DP.

. J




TOA Estimation in Multipath

VEp(t) = r(t) = \/E, 31y aup(t — 1) + n(t)

It may be difficult to recognize the first path, especially at low and
medium SNRs

North
’ o bfpony

3 EJ 00 T ™0 50 E
o
room P ‘
Measurement Crid 0 T
PR
H ‘
T o
IEEEE) ER @ 00 e B E)
..... * ] teon
..... 0 il
T !
.3 — E3 100 1 200 250
om
W » o
ED o ] E)
Tine st

etection of first path may be challenging

o

M.Win, R.Scholtz, “Characterization of Ultra-Wide Bandwidth Wireless Indoor Channels: A Communication-Theoretic
View ", IEEE JSAC, Dec.2002

CRB and ZZB for ML TOA Estimator in

multipath
r(t) - E, ia:p(f —m)| dt

T T T3

Toh
Log-likelihood function  c(v) = —%0/0

T T T T T T T

10° 7
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0—0 778, CM5] |

B[ o0 d : -
1= o pitp r —o778,CM1| ]

N,
872E,a}(32 — E}/E,)
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& (= -1 (k) _ @ Nk
A.x( ) Ep/nb [S (tlT) (t|T+ )]

N,
= SNR F
>o(Faw) |
k=1 10-5“..10..“

1
Pmi"(;:):\'h
4¥¢l
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15
SNR (dB)

ZZB as a function of SNR for the IEEE 802.15.4a channel models. Also shown is the CRB in AWGN channel for

1 Ty
228= [ 2 (1= 2) Pa () dz| s
Tn o band-pass pulse with RRC envelope, fo = 4GHz, v = 0.6, 7, = 0.8ns and T, = 100 ns.

Ziv-Zakai bound
D.Dardari et al., “Ranging with Ultrawide Bandwidth Signals in Multipath Environments,” Proceedings of the IEEE, Feb. 2009
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ML TOA estimation

* Classical non-linear parameter estimation problem

* Maximum likelohood (ML) TOA estimator (matched filter and
maximum search)

* It requires sampling at Nyquist rate
device '8

F—JMMWMMWWM \M u — J

received signal

estimated
ToA

Energy detection-based TOA Estimators

* Low complexity (sub-Nyquist sampling rate, non-coherent)
* TOA resolution is bounded by the ED integration time

TOA estimation

/

Searching window /

meshoid___ i J4l o .

Sample ndex /




ED TOA Estimators: 15 path detection

W [ signal + noise sample

searchback window D noise-only sample

- »
12 otk k. ko K ample
ky index

first arriving path

Fig. 9. Tlustration of the Max, P-Max, simple thresholding, JBSE. SBS and SBSMC algorithms.

Maximum Bin Search
Threshold Crossing Search
Jump Back and Search Forward

Serial Backward Search

D.Dardari, C.-C.Chong, M.Win, “Analysis of threshold based ToA estimators in UWB channels”, EUSIPCO2006

1.Guvenc, Z.Sahinoglu, “Threshold-based TOA estimation for impulse radio UWB systems”, ICUWB2005

S.Gezici, Z.Tian, G.B.Giannakis, H.Kobayashi, A.F.Molisch, H.V.Poor, Z.Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future
sensor networks”, IEEE Signal Proc. Mag., Jul. 2005

D.Dardari, A.Conti, U.Ferner, A.Giorgetti, M.Z.Win, “Ranging with Ultrawide Bandwidth Signals in Multipath Environments,” Proceedings of the IEEE, Feb. 2009
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( Soft-decision and hard-decision ranging
based on energy detection

0=|r 0},‘/0(1} ‘ true TOA, wireless channel, energy detector parameters

()
h(t;s) = ay(t) (s — m(t)) wideband CIR
=1

VMW/N Soft Decision V
W .....‘..
r® ap " [ o Pir [ ve b fa(b)

Hard Decision

I
I
|
r(t) = u(t) + n(t T N,
( ) ( ) ( ) P Decision Algorithm 7
u(t) = [ h(t;7)s(t—71)dr »

1 Np—1
bi=-— > Bip
Np =

Tips =T (ti,p.s) = Uips + Nips

64
Nep—1 Nep—1
Bip= 2 m(tips) = Y (ips+nips)’
5=0 s=0

S. Bartoletti et al., “A Mathematical Model for Wideban Ranging, ” IEEE J. of Select. Topics in Signal Proc., Mar. 2015




Energy samples

* Typically, ranging is based on hard-decision which provides
the TOA estimate from the energy bins

* If the distribution function of energy bins is known, then a
soft-decision ranging can be conceived providing a posterior
probability function of the TOA estimates

* Models for both hard-decision and soft-decision ranging
depend on the analysis of the energy samples distribution

e Ny _ompen? (BN, \ A S
> : =L 2 P o DN,
Bi—5 ~ XN, N, (M) fo 016) = Moo= (X02> ([

+o00 “ BN,

Ai/2)r L 4, 5ok

I N1 (b\e)_(r%z( g (M %)

§ § 7p7 —0 r! I\(NNb+7.>
S=

Range Likelihood

* The RL is obtained from the observations of the bins and their
distribution as

A(sb) =TI fa: (bils, On, 8q)

* It can be directly used for localization (localization based on
soft-decision ranging)




Range Estimate

* E.g., detection of the first arrival path = selection of the first
bin index containing a portion of the signal

iGB:{O,l,...,Nb—l}

Threshold {51}

7 =g(i)
9(2) =1Tq +Ta/2
* Popular hard-decision algorithms: TCS, MBS, JBSF, SBS

* Localization based on hard-decision ranging

.

Threshold crossing event
& PMF of selected bin

* HD algorithms involve comparison of bins with thresholds
* Threshold crossing event

Cth:{zlieBZ Bi>§i}

P{Cn|0} =1— ] Fe, (£u16)

neB
* PMF of the selected bin
fi(i]0) = P{S; N Cn|0} /P {Cin |0}

Si N Ciu|0 = {i is selected, Cyy,|0}




Threshold crossing search

I Iwm)=BNn{m -W,m-W+1,...,m—1}
nEilin Iy (m) = B\Zw (m)

ample ndex

~ |Cen

i = min{i € Blb; > &}

SiNCw|0 = {B; < &;Vj € Z;(i),B; > &[0}

fii10) = [1 - Fo, &10)] T o, (€/10) [1 - I £, (&al0)]

JEL;(3) neB

B=1{0,1,...,7}  £=[1.3,1.1,0.9,2.5,1.4,2.9,1.9,1.4]
b =1[08,1.2/1.3,2.3,2.5,2.8,2.4,1.2]

Maximum bin search

I Iwim)=BNn{m -W,m-W+1,...,m—1}
nEilin Iy (m) = B\Zw (m)

. |Ctn
7 = argmax b;
i€B

SiNCiw|0 = {B; < B;Vj € B\{i}|0}
\{B; <¢,Vj € B,B; < B;Yj € B\{i}|6}

£i(il6) = [/ I1 e, 416) fe. (b16) db—/ [T Fo,(0)10) fe.v10) ab] [1 = T] Fe, (€ul0)] -

0 jes\{i} 0 jen\{i} neB

B={0,1,....,7}  £=[1.3,1.1,0.9,255,14,2.9,1.9,1.4]
b=[0.8,1.2,1.3,2.3,2.5/2.8,2.4,1.2]




Jump back search forward (W)

i Iwm)=BNn{m -W,m-W+1,...,m—1}
xxxxxx .. L I ik c
il Tiy (m) = B\Zw (m)

K Sampe ndex

19 min{{i € Ty (m)|b > &) U {m})

S; N Ct},|0 = Mz‘o U Mﬂe
M;|0 = {B, < &5 € Tw (i), B; < BVj € B\{i}|0}\{B; < &,Vj € B,B; < B,Vj € B\{i}|6}
Mo = | {B; <&V € Limiw(i),Bi > &, B, < BYj € B\{m}(6}

meELw (i+W+1)

)=[[ T Fe&oro) TT Fo 00 0o [ TT o, G0)00) o, 00)
JETw (i) JETS, (i)\{i} 0 jeB\{i}

| L e&mior s 0i0) - s sio) T Fo,600) o io)an] [1- TT Fo. erl)]

+
JETE_ypw (D\{im} neB

meTw (1+W +1) VST ey (3)

B=1{01,...,7} €=11.3,1.1,0.9,2.5,1.4,2.9,1.9,1.4]
b

W =3 =1[0.8,1.2,01.3,2.3,2.5,2.8,2.4,1.2]
™
Serial backward search
T i Iwim)=BNn{m -W,m-W+1,...,m—1}
‘‘‘‘‘‘ iy Zvew = B\Zwim)

V1€ min{{i € Zon(m)|b; > &, € Trm—s(m)} U {m}}

SiNCm|0 = M;|0 UMS|0
M;|0 = {B;_y < &1 if i > 0,B; < B;Yj € B\{i}|0} {B; < &;Vj € B,B; < B;Vj € B\{i}|0}
Moo= |J {Bii1<&1ifi>0,B;>§V) €L, i(m),B; <B,Yj € B\{m}|0}
MEZIN,;, —i—1(Nbin)

+oo .
5000) = [ [ Fo G000 T Fo 0000 [ TT Fo 6010 0004

JEB\{i-1,i} 0 jeB\{iy

oo 1
[ o Ea@10) T (7o, 016)  Fo(l0)] T Fo, (016) o, 016) at][1 ~ TT Fi ()]

+2
GE€Tm—i(m) JETE,_ (m)\{i—1,m} neB

METNy; —i—1(Npin) * &m,

B=1{0,1,...,7} £€=11.3,1.1,0.9,2.5,1.4,2.9,1.9,1.4]
b=1[08,1.2,1.3,2.3/2.5,2.8,2.4,1.2]
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TOA estimation error

1 Tovs
T / fe(el@q,T)dr
obs J0

fe(el6a) =

fe(el0a,7) = Eg,{ fe(€|0)}

/i(il0a,7) = Eo,{ /1(i]6)}

otherwise

fe(dl@q)7) = {|W|f|(g_l(e+7')|0d,7') for e € &,
: 0

+o0
0:(6q) = [ leE (e|0q) de

Tractable range information model

* Approximation of the range information model to enable the
design of soft-decision and hard-decision ranging systems

di~Np\9

Bi—y = Bi—g ~ N(NpNap + i, 2(Np Nay + 2)1))
1 Nb—l Np_l 2
. lemma B~ L E{UZ 1+ szs)
P s=0 p=0
Nop—1 Np—1 E{U2 }
— 1,p,8
N = ;
o
s=0 p=0
Nb—l J\[p_1
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PMF od selected bin index

1 1
o Simulaton & Model o Simulation 4 Model
08| e 08|
T 06 R 0.6 |- N
= 04 8 0.4 -+
0.2 T 4 0.2 B
0 % 0 i
10 20 30 40 50 60 70 10 20 30 40 S50 60 70
i i
1 1
o Simulation & Model o Simulation & Model
08| e 08|
S 06 e S 06 e
= 04f B = 04l e
02 N 02 T N
0 pil 4 0 al.|.&
0 10 20 30 40 S50 60 70 0 10 20 30 40 S50 60 70
i i

Fig. 2. Example PMF of the selected bin index for the TCS (top left), MBS (top right), JBSF with W = 5 (bottom left), and SBS (bottom right) algorithms
with Ty = 2ns, N = 128, and v = —10dB. The first bin containing the transmitted signal has index i = 20.

Range information model accuracy

* Distance between the PMF of selected index obtained from the proposed
range information model and those obtained through sample-leve
simulation

Dys {p1,p2} (TOP), Drvise {p1,p2} (MIDDLE), AND Dyig {p1, p2}
(BOTTOM) FOR THEORETICAL AND SIMULATED PMF OF THE SELECTED
BIN FOR HARD-DECISION ALGORITHMS.

1 ) 21 (4) Ny =16 Np =128
Dys {1717?72} =3 § 171(7/) log | ———"— 4=-20dB ~y=-10dB ~=-20dB ~=-—10dB
2 ; p1(d) + pa(
ieX TCS 0015 0.013 0017 0.009
1 . 2p2(i) MBS 0.009 0013 0010 0.016
+ 2 sz(l) log (1) + p2(i) JBSF 0.009 0.012 0.010 0.015
iex p1 P2 v ; Y !
SBS 0.009 0.012 0010 0015
N, =16 N, =128
y=-20dB y=-10dB ~y=-20dB ~y=—10dB
12 TCS 0.006 0.007 0.006 0011
1 . - MBS 0.004 0.006 0.004 0012
Drysk {p1,p2} = m E [p1(4) — p2(i)| JBSF 0.004 0.006 0.004 0.009
ieX SBS 0.004 0.006 0.004 0.010
N, =16 N, =128
y=-20dB y=-10dB y=-20dB ~y=—10dB
TCS 0.023 0.037 0.028 0.061
. . MBS 0010 0.040 0011 0.089
Duie {p1,p2} = I,féd,\i({‘pl(l) —p2(d)l} JBSF 0.010 0.040 0.010 0054

SBS 0.010 0.038 0.010 0.070




Energy detector design

* The proposed range information model enables the design of
the ranging system.

* Detection and false-alarm probabilities

Py(0a) =Y fi(il00,A#0)  Pu(Ba) = fi(il6a, A = 0)

i€eB ieB

¢ MSE of the TOA estimate

+o0o
0:(0a) :/_ e? fe (e|0q) de

ED design criteria

* Different criteria for the design of ED parameters based on
the proposed range information model (classical approaches
based on detection and false-alarm probabiltiy only)

0a=  argmin  0,(64)
{6a:Pa(62)>P5}

04 = argmin 0t(04)
{0a: Pra(0a)<Pg}

04 = argmax  Py(604)
{04 :0¢(0a)<of}
04 = argmin vt (04)
0(1

vi(8a) = 01(0a) Pa(0a) + v(84) [1 — Pa(84)]
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Ranging accuracy

er(7) [ns]

(@) TCS algorithm

0
er(7) Ins
(c) JBSF algorithm

mat

Fig. 4. Example CDF of the TOA
N, = 128, 7 = ~10dB; (b) N = 1
and theoretical results are shown in solid lines.

er(7) [ns]

(b) MBS algorithm

er(7) [ns]

(d) SBS algorithm

error for the TCS, MBS, JBSF with W = 5, and SBS algorithms with different values of Np and 7: (a)
10dB; () Np = 128, = ~20dB; and (d) Np = 16, ¥ = —20dB. Simulation results are shown in symbols

RMSE of TOA estimate

150
o(a)
4 (b)
o(e)
1wof °@ 1
= A
- =0
2
=
2
50 | 1
14 15 16 17 18

TNR [dB]

Fig. 5. RMSE of the TOA estimate as a function of TNR per pulse &/(Np o2)
for v = —20dB and —10dB, and different values of Np: (a) Np = 128,

4 = —20dB; (b) Ny = 16, v = —20dB; and (c) Np = 1, y = —20dB;
(d) Np = 128, v = —10dB; (¢) Np = 16, v = —10dB; and () Np = 1,
4 = —10dB. Simulation results are shown with symbols and theoretical

results are shown in solid lines.

150 . . . .
o(a)
2(b)
o(c)
w0} °@ 1
z
[5a)
2
=
]
50 - 1
0 . . . . . . .

TNR [dB]

Fig. 6. RMSE of the TOA estimate as a function of TNR per pulse &/(Np o2)
for N, = 16, v = —10dB, and different emission masks: (a) China; (b)
Japan: (c) Europe/Korea; and (d) USA. Simulation results are shown with
symbols and theoretical results are shown in solid lines.
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Localization accuracy

100 5

10-1

LEO

102
0.0

€* [m]

Fig. 7. LEO as a function of the maximum tolerable localization error for
soft-decision and hard-decision localization with Ty = 2ns, Np = 128, and
different values of ~yp: (1) soft decision (dashed curves from left to right are
for o from 30 to 10 dB); (2) JBSF with Ny, = 5; (3) JBSF with Ny, = 2; and
(4) TCS. Theoretical results are shown in solid lines and simulation results
are shown in symbols.
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SPARSITY PROPERTY OF
LOCALIZATION

Power Allocation in Network Localization

High accuracy localization is crucial for numerous location-based applications

Power allocation not only affects the localization accuracy, but also
determines the network lifetime

The aim of power allocation is to maximize localization accuracy under
transmit power constraints
Existing works on power allocation for network localization

— Used heuristic ideas and relaxation methods to provide suboptimal strategies

— Obtained numerical results by using standard optimization packages

— Numerical results suggest that certain transmitters are more effective in
improving localization accuracy

More insight is desirable for the design and operation of networks
Contributions
— Develop a unifying framework for power allocation in network localization

— Develop an algebraic method to obtain optimal strategies for power allocation
problem analytically




Qutline

* Problem Formulation

System Model

* Wireless Network Localization (WNL): determine the agent’s position based
on ranging measurements with respect to anchors

N
S © Anchor (known location)
,

o’/ @ Agent (Unknown location)

* System Model

— Ny, anchors with location p; € R?, agent position p

distance between anchor j and the agent d;

— ranging coefficient (RC) ¢;

. T
power allocation vector x := [z1, T2, - -+ , TN, |




System Model

* Square position error bound (SPEB)
— A lower bound of the mean square error, i.e.,
P(p;x) = tr {J. (%)} <E{|[p—p|*}
where J.(p; x) is the equivalent Fisher information matrix (EFIM)
* The EFIM is a d x d matrix for the agent’s position

Ny (o) /d
Ch u, = (P — Px)/dk
Je(pix) = Zxk " 2B llkll;g/ angle vector

/k'=1 dk \

sum over anchors amplitude loss exponent

* Problem Formulation: minimize SPEB under a total power constraint

min tr {ng(x)}

{x}
s.t. total power constraint
x=0

System Model

* Radar Network Localization (RNL): obtain the position of the target based on
ranging measurements of total distance from transmitters to receivers
reflected by the target

° Transmitter (known location)
. Receiver (known location)

o Target (Unknown location)

* System Model
— N, transmit antennas and N, receive antennas with position P;, target position po
— distance between antenna j and the target: d;
— ranging coefficient (RC) (x;
— power allocated to transmit antenna k : T




System Model

* Square position error bound (SPEB)
— A lower bound of the mean square error, i.e.,
P(po;x) == tr {I. (po;x) } <E{||po — pol®*}
where J.(po; X)is the equivalent Fisher information matrix (EFIM)

* The EFIM is a d x d matrix for the agent’s position u. = (Po — Pk)/dk
N, angle vector

Jo(po; x) :Zd% 2’2“;3 [y, + ;] [uk—b—uj]T
j=1% k=1%

sum over Tx and Rx
* Problem Formulation: minimize SPEB under a total power constraint

r{n’gl tr {J.1(x)}

s.t. total power constraint

x~0

Unification of Power Allocation Problem

* Comparison of SPEB and FIM for WNL and RNL
WNL

P(pix) =[tr {37(pi )}
Ny

RNL

P(po; x) : Po;x)}
Je(po;x) = Z.
Jj=1

]l

} Power Allocation Vector
X = ["1"171‘21 5 Tm

P(x) =tr {J;'(x)
=3 > Gy Tuug

j K
N ]E'Nl N> \ ‘\
Transmitting nodes N\ ={1,2,--- ,mJ / unit vector

Receiving nodes _/\/2 1,2,---.n equivalent RC
 Power Allocation Problem: minimize SPEB under a total power constraint

I?}gl tr{Je x}

s.t. (— total power constraint

x>0

]T




Prior Positional Knowledge

* A prior positional knowledge can improve the localization accuracy and is
useful for a wide range applications such as tracking and navigation

* When prior positional knowledge of the agent/target is available, the SPEB
can be approximated as Py(x) = tr {J,'(x)}, where

Jp(x) =Jo + Z Z &y - ukjugj (€k; and u; are evaluated at |
/ JEN1 REN:  position p = E{p}

Prior positional knowledge

* Power Allocation Problem with Prior Positional Knowledge
Py r%u? tr {J;l(x)}

st. 1T.x<1
x>0

Qutline

* Sparsity of Optimal Power Allocation Vector




4 N
The Sparsity of Optimal Power Allocation

* Main theorem: For d -dimensional network, there exist an optimal solution x*
of & (orZ, ) such that

(Zero—norm: The number
. d+1 _of non-zero elements |
el < (5

* At most <'2 ) transmitting nodes need to be activated for achieving the
optimal localization accuracy (i.e., the minimum SPEB) in d -dimensional
networks (e.g., 3 transmitting nodes for 2-D networks and 6 for 3-D) under a
total power constraint

* Remark:

— Only a small subset of transmitting nodes need to be activated for the optimal
localization accuracy

— Sparsity-inspired power allocation strategies

4 N
The Sparsity of Optimal Power Allocation

* [llustration: Sparsity of optimal power allocation in WNL
— Some anchors contribute more to improve localization accuracy

— closer to the agent, good channel condition, and forming a “good” topology

bad channel condition

far from the agent
bad topology :

© Anchor (known location)

@ Agent (unknown location)




Qutline

* Optimal Power Allocation Strategies

Power Allocation Strategies: 2-D networks

* Since at most three active transmitting nodes are needed to achieve the
optimal localization accuracy, we start with a network with three
transmitting nodes.

* We will first develop strategies for&”and then transform the problem &7, to &

General Networks




SPEB in 2-D Networks

* Notations
— Ugj = [cos dp; sin gy |T
- R=[R; Ry --- R,]|T, where Ry = diag{&e1,&r2, - ,&km}
— Topology matrix matrix A is a mn by mn symmetric matrix, given by
[A) = 1)met s (k= 1ym41 = 28I0%(di5 — Dpr) 1<ik<n
* SPEB in 2-D networks is given by lsjlsm
T

* SPEB Properties
— P(x) is a convex function of x
— P(x) is a non increasing function in x
— Low rank property of topology matrix A : rank(A) <3

Power Allocation Strategy: Simple Networks

* The methodology is to check Karush-Kuhn-Tucker conditions

rank{RTAR} 3 4 1 R

17 RTAR)-ll 0 T\ ITRAR 1
/ (RTAR) }(R™1 +c1) 0 4 2%

First check how | T1TRTAR)I(RT1 +c1}

Y Vo

many active
transmitting nodes ¢
are needed There exist x such that PAV x* is given by
—— aP(x) BP(x) 8P(x) RTAR) IR +c1)
and 21 + 22 =1 \

Provide the optimal
strategy accordingly

1 /
Only one transmitting x* is obtained by solving

a quadratic equation.

No

node is used.

* The algorithm can be extended to the general case, with complexity O(m?)




Power Allocation Strategy: Prior Positional Knowledge

* For problem #2,, though we can apply KKT conditions directly to give the
optimal strategy, the process is difficult since P,(x) has a complex structure

* Recall performance metric:

SPEB without prior positional knowledge SPEB with prior positional knowledge

Pp(x) = tr {J_pl(x)}

Jp(X) =+ Z Z fijj . ukjuzj

JEN1 kEN:

P(x) =tr {J;l(x)}

Je(x) = Z Z i - Upjuy;

JENT KEN,

* Basicidea
— Transform the problem to the case without prior positional knowledge
— Decompose Jg as the combination of FIM obtained by three transmitting nodes

Power Allocation Strategy: Prior Positional Knowledge

* Problem Transformation
— Decomposition Jo= Y’ Y Gyuul

. j=1,2,3 keN,
— Power shift x = x 4+ xg

ev | o) =Jo+ D D Gyry - wyul =T (X) = DD &yl “kj“gj]

jENl keN> j€N1 keN>
i \

( 4-1TRX

_ —1 _ —1(F) — D(%F) —

SPEB | Pp(x) = tr{J, (x)} = tr{J; (X)} = P(X) = TRTARS
l{ Same Structure as the objective of &
—_— \
Py min tr{J; (%)} Zp 1 min tr{J (%)}

{x} {x}

Problem st 1T.x<1 > st 1T x<1+17 %

x>0 X = Xg




/

,\\

Power Allocation Strategy: General Networks

* Consider a network with m transmitting nodes: we have (Zj) combinations
to select three out of transmitting nodes.

* For each simple network, we evaluate the SPEB according to our strategy
and choose the best one

A O Do Combination | SPEB(m~2)
A,BandC 2.1
® A,Band D 2.8
o A candD |12 J

B,Cand D 2.8

B

* The total computational complexity grows as O(m?)

* Impact of sparsity: O(m?)
Compare to the worst-case complexity O(2™) [Godrich et al., 2011]

Qutline

* Numerical Results




Numerical Results

¢ lllustration

— Anchors are deployed on vertices of
an equilateral triangle

— The optimal strategy employs anchors
* Band Cif the agent is in region |
¢ Aand B if the agent is in region Il
¢ Aand Cif the agent is in region Ill

e A, B, and Cif the agent is in region IV '

* Remarks

— Region IV is relatively small, i.e., in most cases only two anchors need to be
activated for the optimal localization accuracy

— The optimal strategy employs two active anchors for agents in “far field” regions

— In practice, two anchor case may use vicinity knowledge to resolve ambiguity

Wireless Network Localization

* Strategies: uniform allocation strategy 7y, near-optimal strategy 72 (use only
two anchors), optimal strategy =*

* SPEB decreases with the number of anchors

10 o T - 10 T T T T T T ‘*
o —s— T
--+=- T2
° . -=-0-- TU
sk
o . Na=2
° g 0 1
o]
&
£ 0 [ ] @ N =1
o % i
£
) 2 TS o
o 2 ot o -
s} ° = I Al
(] =
10 10° L L L L L L L
-10 -5 0 5 10 3 5 7 9 1 13 15 17

Number of Candidate Transmitting Nodes

o J




Radar Network Localization

* Target position is (0, 0) and transmitting antennas and receiving antennas
uniform in [-10,10] by [-10,10] region

* Comparison between the optimal strategy 7*and uniform strategy mu (power
equally allocated to each transmitting node)

[ ]

¢ 10°
6 o { ]
4 ™y Dg
i 8
of [ ] %
2} o %ﬁ 10" E

o 2
2 L < 39.8%

© Transmitter VA

I @ Receiver \\a——bL,,__L:ilj%
- @ Target N, =8
-10 L L - L L L L L L

. . . . . : )
-0 8 -6 -4 -2 0 2 4 6 8 10 " 5 8 10 12 14 16 18

Number of Candidate Transmitting Nodes

Qutline




Conclusion

Developed an analytical framework for network localization which unifies
WNL and RNL

Determined the sparsity property of network localization, i.e., in a 4 -
dimensional network, at most dzl transmitting nodes need to be activated
to achieve the optimal localization accuracy

Proposed optimal power allocation strategies

— for simple networks with three transmitting nodes, we provided the closed-form
expression for the optimal strategy

— for general networks with m  transmitting nodes, we provided the power
allocation strategy with computation complexity O(m3)

Demonstrated that
— The optimal strategy employs two active anchors for agents in “far field” regions

— The optimal strategy outperforms the uniform power allocation strategy
significantly

— The SPEB decreases with the number of candidate transmitting nodes
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Ranging
Cooperative Localization

Diversity Navigation

NETWORK EXPERIMENTATIONS

Characterization of Cooperative Systems

* It requires experiments specifically designed for cooperative algorithms
and their comparisons under the same setting

* In the context of cooperative location-aware wireless networks, two
different kinds of measurements are necessary:

— ranging measurements: required as inputs for&r‘ange-based localization

algorithms; - .

O

— waveforms measurements: required to estimate TOA and detect the  state of
the channel, such as non-line-of-sight (NLOS) condition.

oo

o @

A. Conti et al., “Network experimentation for cooperative localization,” IEEE J. Sel. Areas Commun., Feb. 2012

N




Network Experimentation

T o], ]

D x.y. x [om]
20

15 e =5
"

L. x [em]
80, 169, 1130
3602, 604, 1130
5599, 3002, 1130
0, 1130
11020, 2401, 113.0

|5

R

D0 001 O A e 0

BERGaazus

B3
EZ
&

. 760
20 | 1060.1. 19294, 760

Case Study

The methodology is general and valid for others kinds of indoor/outdoor
environments

The equipment consisted of a pair of UWB devices operating 3.2-7.4 GHz
(radios provide samples of received signals and TOA-based range
measurements, estimating the TOA based on the first path using a
thresholding technique)

1500 measurements per pair of nodes




Ranging error and model

Measurements to characterize the positive bias in ranging errors due to
NLOS conditions and ranging errors in LOS conditions

(a) Ranging and waveform measuremest between & pair of nodes.

(b) Measurement of direct path (DP) excess delay.

Measurements for LOS and NLOS

} { 1500 measurements for each condition to

9 Q characterize the positive bias in ranging

errors due to NLOS and in LOS conditions

i +
range TaBLE 1: Mean and standard deviation of ranging error for different
. . wall thicknesses.
Lody !
— Layout, dw [cm] Mean [cm] std dev [cm]
o
e dovi \:.:\:. e dovi 1 wall, 15.5 16.4 3.7
ranging deviee | e I ranging device 1 wall, 30 295 3.2
e 2 walls, 15.5 +30 452 3
I I |
it . , , :
i v'the bias appears to increase linearly with the
a)

thickness of the wall

| 15cm! | 30cm
<2 LY

ranging device

T

b)

meneaevice ¥ low std indicates that the estimation error is

T dominated by the effects of excess delay
rather than multipath or distance-dependent
noise.

- J




Measurements results

To derive a simple statistical model for ranging error, we categorized measurements in
environment A for different LOS or NLOS conditions (# of walls)

ll°|||||||||||||||||||||||||||||||||llm||||||||||||||
100 - X meazwred, LOS v ]
—— mean LOS
90? O meazured, 1 wall v v v ]
—— mean,1wall v
80 7 measured, 2 walls w vV Vo I
70; —— mean, 2 walls v v v .
60— o v Vvv v 2 v v —
'E L o Yoy - v v Vvo -
5 or 0p>F oy E
4 40l O @ -
B L v o@d} 4
o)
30 00O © &)AnU =
- O y O @ O (¢} -
20 * x QO@? "Qooo x o} =
B o x 0 v O v 7
10 * o} ]
C _ "sf: o o xb x@*  90x o
- F3 -
0_ x%}xx&yxm « ]
x
10 x X " ]
[P FETI NN N ST N ST P L N ST R
-0 100 200 300 400 500 600 700 800 S00 1000 1100

distance [cm]

Choice of features for NLOS detection

* Features are extracted from the received waveform v(t) observed within the
interval T under a particular channel condition.

ot — 1) [o(t)2 dt] 1/2
fT [v(¢)|? dt

o Jptlv(t)|? dt
b @) at

* Temporal dispersion (RMS delay spread)  7ms = [
(higher for NLOS)

mean excess delay

LOS  if s < A7
NLOS if 7ims > Ar

For N=1 is like comparison with a proper threshold ‘Decide 2 {

1
° i K: = —n t)| — 1 dt
Kurtosis aflv|T/T(|U( ) ﬂlvl)

(higher for LOS)

NLOS if K < A¢
LOS i K>

For N=1 is like comparison with a proper threshold ‘Decide : {




Set-up for localization testing (no coop)
\ | |

I ] I or I } ] R
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Experimental results
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Experimental results: LS
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FiGure 5: RMSE as a function of target position in the absence of
priori information. N = 3 (tx1,tx3,tx5) and N = 5 beacons are
considered.




Experimental results: LS
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FiGure 6: RMSE as a function of target position in the presence of
priori information (two-step algorithm). N = 3 (tx1,tx3,tx5) and
N =5.

Experimental results: coop. LS
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Fig. 5. RMSE for the target 1 located in position 19, when it cooperates
with target 2 (cooperative reference node) in varying positions reported in
abscissa.




Experimental results: ML

xmin := 1030 ID=01, RMSE=  48.12

- ID=02, RMSE=  104.25

xmax := 2200 ID=03, RMSE=  165.23
ymin :=920 ID=04, RMSE=  79.32
ymax := 2190 ID=05, RMSE=  57.22
ID=06, RMSE=  28.79
) ID=07,RMSE=  92.98
Dx := 100. ID=08, RMSE=  50.86
Dy :=100. ID=09, RMSE=  38.54

ID=10, RMSE=  56.91
ID=11, RMSE=  36.59

) ID=12, RMSE=  52.86

Values in cm. ID=13, RMSE= ~ 41.29
ID=14, RMSE=  38.83

ID=15, RMSE= ~ 68.18

beaconprof :={1,1,1,1,1} ID=16, RMSE=  16.41
ID=17, RMSE=  21.13

delblas := 0 ID=18, RMSE=  125.68
measiniz := 200 ID=19, RMSE=  119.44
numrealz := 10 ID=20, RMSE=  45.19
~
E imental lts: ML
Xperimental resuits:
RMSE
xmin = 1030 ID=01, RMSE=  82.83
_ ID=02, RMSE= ~ 131.38
xmax = 2200 ID=03, RMSE=  136.61
ymin =920 ID=04, RMSE=  92.66
ymax = 2190 ID=05, RMSE=  48.18
ID=06, RMSE=  18.68
) 1D=07,RMSE= 4061
Dx = 25. - -
ID=08, RMSE= 44,33
Dy = 25. ID=09, RMSE=  71.87
ID=10, RMSE=  59.22
. ID=11, RMSE= 45,77
Values in cm. ID=12, RMSE=  27.40
ID=13, RMSE=  10.43
ID=14, RMSE=  43.11
ID=15, RMSE=  29.30

beaconprof :={1,1,1,1,1} ID=16, RMSE= 23.20
o ID=17, RMSE=  28.45

delblas := 0 ID=18, RMSE=  87.092

measiniz := 200 ID=19, RMSE=  105.76

numrealz := 10 ID=20, RMSE=  33.13




Experimental results:
ML (bias removed)

xmin = 1030 ID=01, RMSE=  145.70
B ID=02, RMSE=  110.56
xmax = 2200 ID=03, RMSE=  66.63
ymin =920 ID=04, RMSE=  20.68
ymax = 2190 ID=05, RMSE=  93.00
ID=06, RMSE=  28.79
) ID=07,RMSE=  41.08
Dx = 100. ID=08, RMSE=  52.01
Dy =100. ID=09, RMSE=  68.20
ID=10, RMSE=  73.28
. ID=11, RMSE=  64.87
Values in cm. ID=12, RMSE=  79.24
ID=13, RMSE=  41.29
ID=14, RMSE=  38.83
ID=15, RMSE=  72.42

beaconprof :={1,1,1,1,1} ID=16, RMSE=  16.41
ID=17, RMSE=  85.22

delblas := 1 ID=18, RMSE=  80.08
measiniz := 200 ID=19, RMSE=  22.94
numrealz := 10 ID=20, RMSE=  62.67

Experimental results:
Hierarchical ML

xmin = 1030 ID=01, RMSE=  272.62

_ ID=02, RMSE= ~ 184.41
xmax = 2200 ID=03, RMSE=  26.64
ymin =920 ID=04, RMSE=  56.20
ymax = 2190 ID=05, RMSE=  47.85

ID=06, RMSE=  141.66
) ID=07,RMSE=  75.97

Dx = 200. ID=08, RMSE=  152.61

Dy = 200. ID=09, RMSE=  139.49

ID=10, RMSE=  193.53

. ID=11, RMSE=  163.06

Values in cm. ID=12, RMSE=  135.06

ne=2 ID=13, RMSE=  200.38
Neer := 4 ID=14, RMSE=  40.77
ger:= ID=15, RMSE=  99.53

beaconprof :={1,1,1,1,1} ID=16, RMSE= 155.79

ID=17, RMSE= ~ 194.17

de|b|z_xs.:: 0 ID=18, RMSE=  172.14
measiniz := 200 ID=19, RMSE=  127.35

numrealz := 10 ID=20, RMSE=  17.87




Experimental results: SPAWN coop

COOPERATIVE SPAWN LOCALIZATION RMSE e (p) [CM] FOR EACH
NODE POSITION (ID) WITH N3 = 3 IN VARIOUS SITUATIONS (A)-(G).

[MT® [® [© [®[® [® |G
1 655 483 | 655 483 | 482 || 485 | 145
2 1115 | 212 | 1115 | 212 | 211 212 | 90
3 830 383 | 830 383 | 383 || 383 | 307
4 1118 | 664 | 1118 | 664 | 664 || 664 | 257
5 1008 | 412 | 1008 | 412 | 413 || 409 | 468
6 395 189 | 395 189 | 189 - 558
7 9038 619 | 908 619 | 619 || 619 | 338
8 - - 99.1 388 | 389 || 390 | 161
9 582 674 | 582 674 | 674 || 674 | 187
10 | 311 349 | 311 349 | 349 || 349 | 254
11 | 461 470 | 461 470 | 470 || 470 | 192
12 | 161 398 | 161 398 | 398 || 398 | 122
13 | 620 448 | 620 448 | 449 || 450 | 339
14 | 489 393 | 489 393 | 393 || 393 | 239
15 | 770 265 | 770 265 - - 296
16 | 478 487 | 478 487 | 487 || 487 | 315
17 | 56.7 465 | 567 475 | 465 || 465 | 206
18 | 593 466 | 593 466 | 466 || 466 | 439
19 | 983 620 - - 620 || 620 | 454
20 | 592 366 | 592 366 | 366 || 366 | 127
(A) coop. with agent 8, no ranging refinement
(B) coop. with agent 8, ranging refinement (WED)

(C) coop. with agent 19, no ranging refinement

(D) coop. with agent 19, ranging refinement (WED)

(E) coop. with agent 15, ranging refinement (WED)

(F) coop. with agents 6 and 15, ranging refinement (WED)
(G) coop. with all agents in 5m, ranging refinement (statistical)

-

|
|
"ee
I |

without ranging refinement

1
1
|

PR I I |

ol 1 TR N BRI
0 20 40 60 80 100 120 140 160 180
e, [cm]

3

Fig. 5. LEO versus ey [cm] for cooperative SPAWN with N, = 3 with
(continuos) and without (dashed) ranging refi Various binati

of cooperative agents are considered: 8 (red), 19 (green), 15 (orange), 5 and
15 (magenta).

estimate

environment

Some lessons learned

* A priori information on the environment improves the position

* Cooperation helps but only if it is carefully exploited

* Localization techniques to be used are related to the

10



Tracking experimentation

Network navigation
Measurements with UWB and Zigbee radios

Data fusion

Mobility models

\\N ewcongﬁ

A. Conti et al., “Experimental Characterization of Diversity Navigation,” IEEE Systems Journal., Mar. 2014 /

UWB and ZigBee nodes deployment

UWB anchor nodes ZigBee anchor

Ranging based on TOA estimation

il

/7
|

nodes

Ranging based on RSSI measurements

Pr

il

il
-

In addition: inertial measurements and data fusion
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Estimated trajectory
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Fig. 12.  Real (gray) and estimated (black) trajectory of the robot for the
diversity navigation system. UWB (triangles) and ZigBee (crosses) anchors

are indicated.
. /

UWB navigation performance

Preo
Pl\'l:l)

en [em] e [cm]

Fig. 7. NEO for the UWB system; constant speed scenario; three mobility ~ Fig. 8. NEO for the UWB system; variable speed scenario; three mobility
models: NM, SM, and SL with optimum window size. models: NM, SM, and SL with optimum window size.
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UWSB, Zigbee, & data fusion

1.0 T T T T T T T T T 1.0

\ ——UWB-SM UWB, ZigBee-NM | |

[ \ ZigBee-SM 1 N ——— UWB, ZigBee-SL
08} Diversity system | | 08 N - == Diversity system
061 R 0.6 1
B a
04r 9 0.4 4
021 R 0.2 1
O0 80 100 00 80
e [em] e [em]

100

Fig.9. NEO for UWB, ZigBee, and diversity system; constant speed scenario ~ Fig. 11. NEO for UWB and ZigBee technologies with models NM, SL, and
is considered. SM in variable speed scenario. Optimum window size is considered for SL.
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SENSOR RADAR NETWORKS

Passive localization

* Ranging based on backscattered signals

* Sensor radar networks (network of monostatic or bistatic

TX signal RX signal
. reflected from
A direct the target
|

V vV t

time of

TOA | arrival

—

°




Bistatic radar coverage limits

» To detect the target the echo must be resolvable with respect to the direct
pulse, i.e., the two pulses are separated by at least a delay y (minimum

resolvable delay) A A

V t

Non-resolvable resolvable

Sy

There is a minimum ellipse where a target inside
is invisible to the bistatic pair.

0
A—9® A

Blind zone

Dlnin = \,’/‘ Rl\ - IJ'x )2 + lR;l'\- - [,l'\- )2 + ~e.

/ ; 5 / 2 > <0 Undetectable
[ — TVt (e — Tr)? /(20 — Rz + (yr — Rro)? —
V(.:[ I'ry)" +(yr — T'zy) \/1.:1 Rzy)” + (yr — Rzy) Diin <:>0 Detectable

Bistatic radar coverage limits

2

fu @ M D\ 4

* Received power from the target P, = / SNG )G (/)7 (‘_>
Jn /
S

(lils)P (47 )}

IEEE 802.15.4a RC

Equi-power positions are the locus of points whose product of the distances from the TX node and
the RX node /, I, is constant (e.g., Cassini oval in free-space f=2)
Target

* Receiver sensitivity requirement:
Py > Pin = lila < (o)

fu ) c 2|18
U 2 / SUNG(NGel o (_)] p
f

i Prn(4)? f

4L

There is a maximum oval where a target outside
is invisible to the bistatic pair due to receiver sensitivity.




UWB sensor radar networks

* Network of monostatic or bistatic sensor radars

Obstructed line of sight conditions (OLOS)
&i(p) ~ N(pi(p), o7 (p))

o Pri(p)
pi(p) =~ Afe 7:(P) = BREN,
fo

Pm-(p):/ Ti(f)m(f, ©1)? ()

, 4ﬂ. fudu) €2ﬂ
> RX t

Ranging and tracking

* Energy detection based TOA estimation
* Tracking via particle filtering

* Mobility models | .
1 xk.zr;%,i
“m,k

P(XkilXr-1,0) = V2o, ke Y Gaussian model

— Speed known direction unknown

By = Xk—1, + Vi Ar 0; ~U[—m,7])
’UAT

m = P Xki— i S UA —q) e
Om,k \/ierfc_l(l—q) ( {| k, ’J'k,l T} q)

— Speed direction learning N

My =Xk—15+Ve-1Ar  vi_q = E (X — Xk—m—1)
vk Ar Ny Ar 2=

Ompk = ——=——F——
- V2 erfc (1 — )




Case study on sensor radars

Monostatic WSR

30

St(f) = —42dBm/MHz
European lower band  f1, = 3.1GHz

s :;sz H
20}

fu = 4.8GHz

B =2

: P, = —95dBm

Tiny = 4ns

Tg = 120ns

A=-739

B = —0.0875

& L

— ) = 0.84B
H) _

o ip = 17dB

25

Agnr = —5,0,5,10dB

Numerical sesults

ERMS — 1.2m

25

ERMS = 0.35m

S. Bartoletti et al., “Sensor Radar Networks for Indoor Tracking,” IEEE Wireless Commun. Letters, Feb. 2014




Numerical results
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SEMIPASSIVE TAGS

From RFID to RADIAL

* Radio-frequency identification (RFID) of objects in real-time enables new
important applications (e.g., logistic, automotive, surveillance, and
automation)

* Such applications require also high-accuracy localization/tracking
capability even in harsh propagation environments

[ radio detection, identification, and localization }

-——

Who?
Where?

New RFID




Backscattering modulation

scatter

,{ .

J\/,/,”/,,"\ﬂ// backscatter signal (clutter) 71, = 00

s
—————————————————————————————————————————— - \j
READER T Tt 7
a— structural mode scattering "L
— antenna mode scattering

(depends on ZL )

* The backscattering modulation is obtained by changing the tag’s antenna
load according to the information to be transmitted, e.g. identifier (+

payload).

Antenna backscattering

* Itis essential to model antenna backscattering characteristics

 Structural mode
— Reflection of e.m. waves depending on antenna’s shape and material,
independently of the load

* Antenna mode

— Reflection of e.m. waves depending on the load - data can be sent back to
the reader through variations of Z, without requiring a dedicated power

source




4 N
Order of Arrival Estim. via UHF-UWB RFID
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Relaying

* Poor coverage calls for higher transmitted power or/and relaying,
especially in the presence of obstacles
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N. Decarli et al., “Non-Regenerative Relaying for Network Localization,” IEEE Trans. on Wireless Commun., Jan.
2014




Relaying

* Poor coverage calls for higher transmitted power or/and relaying,
especially in the presence of obstacles

RMSE [m]
14

RMSE [m]
14

o

o
2 10
x[m]

X [m]

(a) Without relays (b) JF relays

Figure 5.7: RMSE contour map in the 2D environment.

Greentags | ) €T

* Next frontier is to design a green tag (>80% of the tag on organic
materials)

Physical phenomena
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o
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Greentags | ) €T

* Substrate integrated wave technology

* Energy harvesting

'UHF antenna
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