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FIGURE 7.1

Examples of texture in CT images: (a) Liver. (b) Kidney. (c) Spine. (d) Lung.
The true size of each image is 55 x 55 mun. The images represent widely dif-
fering ranges of tissue density, and have been enhanced to display the inherent
texture. Image data courtesy of Alberta Children’s Hospital.
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FIGURE 7.2
Examples of texture in mammograms (from the MIAS database [376]): (a) —
(c) oriented texture; true image size 60 x 60 mm; (d) random texture; true

image size 40 x 40 mm. For more examples of oriented texture, see Figures
9.20 and 1.8, as well as Chapter 8.
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FIGURE 7.3

Examples of ordered texture: (a) Endothelial cells in the cornea. Image cour-
tesy of J. Jaroszewski. (b) Part of a fly’s eye. Reproduced with permission
from D. Suzuki, “Behavior in drosophila melanogaster: A geneticist’s view”,
Canadian Journal of Genetics and Cytology, XVI(4): 713 - 735, 1974. (© Ge-
netics Society of Canada. (c) Skin on the belly of a cobra snake. Image
courtesy of Implora, Colonial Heights, VA. http://www.implora.com. See
also Figure 1.5.
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FIGURE 7.4
(a) Model for speech signal generation. (b) Model for texture synthesis.
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(b)

FIGURE 7.5

(a) Image of a random-noise field (256 x 256 pixels). (b) Spectrum of the image
in (a). Reproduced with permission from A.C.G. Martins, R.M. Rangayyan,
and R.A. Ruschioni, “Audification and sonification of texture in images”,
Journal of Electronic Imaging, 10(3): 690 — 705, 2001. (©) SPIE and IS&T.
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Figure 7.6 (

FIGURE 7.6

(a) Circle of diameter 12 pixels. (b) Circle of diameter 20 pixels. (c) Fourier
spectrum of the image in (a). (d) Fourier spectrum of the image in (b).
(e) Random texture with the circle of diameter 12 pixels as the spot. (f) Ran-
dom texture with the circle of diameter 20 pixels as the spot. (g) Fourier
spectrum of the image in (e). (h) Fourier spectrum of the image in (f). The
size of each image is 256 x 256 pixels. Reproduced with permission from
A.C.G. Martins, R.M. Rangayyan, and R.A. Ruschioni, “Audification and
sonification of texture in images”, Journal of Electronic Imaging, 10(3): 690 7
- 705, 2001. (© SPIE and IS&T.
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(b)

Examples of two synthetic ROIs with known FD. Each ROI is of size 128 x 128 pixels.
(a) True FD= 2.30, estimated FD = 2.38. (b) True FD = 2.70, estimated FD = 2.76.
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7.3 Statistical Analysis of Texture

Simple measures of texture may be derived based upon the moments of the
gray-level PDF (or normalized histogram) of the given image. The k*" central
moment of the PDF p(l) is defined as

mre — Z (Z - ,Uf l), (7.1)

where [ = 0,1,2,...,L — 1 are the gray levels in the image f, and p is the
mean gray level of the image given by

pr =) 1p(l). (7.2)
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The second central moment, which is the variance of the gray levels and is
given by

-+.m
||

i [ — ﬂ’f a (7'3)

can serve as a measure of inhomogeneity. The normalized third and fourth
moments, known as the skewness and kurtosis, respectively, and defined as

ms3

skewness = —; 7L (7.4)
My
and
my
kurtosis = 7.5
urtosis = m2’ (7.5)

indicate the asymmetry and uniformity (or lack thereof) of the PDF.
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FIGURE 7.11

12

A 16 x 16 part of the image in Figure 2.1 (a) quantized to 3 b/pizel, shown

as an image and as a 2D array of pixel values.




The Gray-level
CALGARY Cooccurrence Matrix

TABLE 7.1
Gray-level Co-occurrence Matrix for the Image in Figure 7.11, with
the Second Pixel Immediately Below the First.

Current Pixel Next Pixel Below

0 0 3 4 1 0 1 0 0
1 6 44 10 9 9 1 0 0
2 3 13 13 5 8 3 1 0
3 1 9 11 9 3 5 2 0
4 0 1 o 7 9 9 3 0
9 0 0 1 9 11 10 4 0
6 0 0 0 0 2 3 10 1
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7.3.2 Haralick’s measures of texture

Based upon normalized GCMs, Haralick et al. [441, 442] proposed several
quantities as measures of texture. In order to define these measures, let us

normalize the GCM as

(7.6)

P(Zl,lz)
p(llﬁlz) — L—1 Pl l
l1=0 l _O ( 1 2)

14
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using the GCM

A few other entities used in the derivation of Haralick’s texture measures are

as follows:

where £ =0,1,2,...

where £ =0,1,2,...

l] — Z l11l2

2:

L—

y(l2) = Z (s I2),

L—1 L—
Prty(k) = Z Z (I, 12),

=0 I3=0
W
li+la=k

,2(L — 1), and

L-1 L-1

Pa—y(k) =D > plla,l2),

I1=0 l3=0
W
[l =12 |=k

(7.7)

(7.8)

(7.9)

(7.10)
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The energy feature F;, which is a measure of homogeneity, is defined as

L-1 L-1

Fi=) > ph) (7.11)

l1=0 12=0

A homogeneous image has a small number of entries along the diagonal of the
GCM with large values, which will lead to a large value of F;. On the other
hand, an inhomogeneous image will have small values spread over a larger
number of GCM entries, which will result in a low value for Fj.

16
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The contrast feature F5 is defined as

L—-1 L-1

Z k? Z Z p(l1,12).

=0 lx=
\—v_/
111 —12|=k

(7.12)
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The correlation measure F3, which represents linear dependencies of gray

levels, is defined as

L-1 L-1

Z Z I1 12 p(llah) — Mz Uy | (7'13)

11=0 l>=0

1

Oz Oy

F3 =

where u, and p, are the means, and o, and o, are the standard deviations
of p, and p,, respectively.
The sum of squares feature is given by

L-1 L-1

Fy=)_ > (h—ps)?plh,l), (7.14)

11=0 l>=0

where ps is the mean gray level of the image.

18
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The inverse difference moment, a measure of local homogeneity, is defined
as

L—-1 L-1

1
Fy = l1,12). 7.15
5 lzzl—l—(h—lz)zp(l 2) ( )

1=0 I3=0
The sum average feature Fj is given by
2(L-1)
Fo= 3 kpany(b) (7.16)
k=0

and the sum variance feature F is defined as

2(L—1)

Fr= ) (k- F5)® paiy(k). (7.17)
k=0

19
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The sum entropy feature Fg is given by

2(L—1)

Fo=— 3 Daty(k) 10gs [paty (). (7.18)
k=0

Entropy, a measure of nonuniformity in the image or the complexity of the
texture, is defined as

L—-1 L-1

Fo=—Y Y p(l,l2) logy [p(i1,12)] . (7.19)

[1=0 l>=0

20
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(b)

FIGURE 7.24

(a) A 1,000 x 900 section of a mammogram containing a circumscribed benign
mass. Pixel size = 50 pm. (b) Ribbon or band of pixels across the boundary
of the mass extracted by using morphological operations. (c) Pixels along the
normals to the boundary, shown for every tenth boundary pixel. Maximum
length of the normals on either side of the boundary = 80 pixels or 4 mm.

Extraction of
regions of
/nterest or
selected
pixels for the
computation
of texture and
gradient
measures
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FIGURE 7.26

Mapping of a ribbon of pixels around a mass into a rectangular image by
the rubber-band straightening transform [428, 451]. Figure courtesy of B.
Sahiner, University of Michigan, Ann Arbor, MI. Reproduced with permission
from B.S. Sahiner, H.P. Chan, N. Petrick, M.A. Helvie, and M.M. Goodsitt,
“Computerized characterization of masses on mammograms: The rubber band
straightening transform and texture analysis”, Medical Physics, 25(4): 516 —
526, 1995. (c) American Association of Medical Physicists.
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Let F(r,t) be the polar-coordinate representation of the Fourier spectrum
of the given image; in terms of the Cartesian frequency coordinates (u, v), we
have r = vu? 4+ v?%, and t = atan(v/u). Derive the projection functions in
and t by integrating F'(r,t) in the other coordinate as

F(r) = /‘Jr F(r,t) dt, (7.40)
and _
F(t) = / F(r,t) dr. (7.41)

23
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FIGURE 7.15
Fourier spectral characteristics of periodic texture generated using the spot-
noise model in Figure 7.4. (a) Periodic impulse field. (b) Circular spot.
(c) Periodic texture generated by convolving the spot in (b) with the impulse
field in (a). (d) — (f) Log-magnitude Fourier spectra of the images in (a) -
(c), respectively.
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FIGURE 7.16

The spectrum in Figure 7.15 (f) converted to polar coordinates; only the upper

half of the spectrum was mapped to polar coordinates.
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FIGURE 7.17
Projection functions in (a) the radial coordinate r, and (b) the angle coordi-
nate £ obtained by integrating (summing) the spectrum in Figure 7.16 in the
other coordinate.
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FIGURE 7.18

Fourier spectral characteristics of the quasi-periodic texture of the fly's eye
image in Figure 7.3 (b): (a) The Fourier spectrum in Cartesian coordinates
(u,v). (b) The upper half of the spectrum in (a) mapped to polar coordinates.
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FIGURE 7.19

Projection functions in (a) the radial coordinate r, and (b) the angle coordi-
nate ¢ obtained by integrating (summing) the spectrum in Figure 7.18 (b) in
the other coordinate.
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+ A method for classifying each pixel in an image based
upon measures of local “texture energy”

+ The texture energy features represent the amounts of
gray-level variation within a sliding window

+ The basic Laws’ operators are:

>L3=[ 1 2 1]
> E3=[-1 0 1]

> S83=[-1 2 -1]

(center-weighted averaging)
(edge detection)
(spot detection)

+ Nine 3x3 masks can be generated by multiplying the
transposes of the operators: L3'£3 = a Sobel mask.

29
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+» Operators of length five pixels may be generated by
convolving L3, E3, and S3 in various combinations:

5= [3%[3=[1 4 6 4 1
LE5 = [3*E3 = [-1 -2 0
,S5 =-E3*E3 =[-1 0 2
JR5 =-S3*S3=[1-4 6
W5=-F3%S3 =1[-1 2 0

» Some 5x5 convolution operators:

> L5L5 = L57L5
> WsW5 = W5"W5
> R5R5 = R5'R5

2 1°
0 -1]
4 1

2 1]

(local average)
(edges)

(spots)
(ripples)
(waves)
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5555

Results of Laws’ Operators

- R5R5
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Laws’ Texture Energy Measures
ENKEEKH%F Sum of the absolute values in a 15x15 window
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Fractal Analysis of Grayscale
CALGARY Images: Blanket Method

=

N—2 N-2
A(e) = 7: {82
0 n=

[ fe(m,n) — folm,n+ V)] + | folm,n) — folm +1,m)|1)

A\,

™ 3

_|_

Alog[A(e)]
A log|e]

D=2
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> W hoE

Compute the 2D Fourier transform of the image

Compute the 2D power spectral density (PSD)

Transform the 2D PSD into a 1D PSD by radial averaging
Fit a straight line to a selected range of frequencies of the
1D PSD on a log—log scale

Determine the slope B of the best-fitting straight line

§—p

FD =

35



Fractal Analysis of Grayscale
CALGARY Images: Example

Model FD = 2.20 Model FD = 2.40 Model FD = 2.60
Blanket FD = 2.50 Blanket FD = 2.57 Blanket FD = 2.70
PSA FD = 2.66 PSA FD = 2.67 PSAFD =2.68

36
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aQ

A

FIGURE 8.3

Directional (sector) filter in the Fourier domain. The brightness is propor-
tional to the gain [36]|. Figure courtesy of W.A. Rolston [542].
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Figure 8.4 (e)
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(c)

FIGURE 8.6

(a) A test image with overlapping directional components at 02,45, 90°, and

135°. Results of fan filtering at 90° after (b) one pass, (c) nine passes. Figure
courtesy of W.A. Rolston [542]. 41
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The 2D Gabor functions are given as

h(z,y) = g(z',y') exp[—j 27 (Uz + Vy)],
(z',9") = (z cos ¢ + ysin ¢, —z sin @ + y cos @), (8.35)

where (z',y') are the (z,y) coordinates rotated by an arbitrary angle ¢,

o(zy) = ( : ) exp [— (/A" “’2] (8.36)

2T \o2 202

is a Gaussian shaping window with the aspect ratio A\, and U and V are the
center frequencies in the (u,v) frequency plane.
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43

and

8.35 and 8.36). Figure courtesy of W.A.

1018

.

0 (with reference to Equat

Rolston [542].

An example of the Gabor kernel with ¢ = 0.5,A = 0.6,U = 1,V = 0,

¢




Gabor Filter:
CALGARY Impulse Response

FIGURE 8.8
An example of a Gabor kernel, displayed as an image. Figure courtesy of

W.A. Rolston [542]. 44



Gabor Filter:
CALGARY Frequency Response

v

FIGURE 8.9

Division of the frequency domain by Gabor filters. Two sets of oval regions
are shown in black, corresponding to the passbands of three filters in each
set, oriented at 0° and 90°. In each case, the three regions correspond to
three scales of the Gabor wavelets. There is a 90° shift between the angles

of corresponding filter functions in the space and frequency domains. Figure
courtesy of W.A. Rolston [542].
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(d) (e)

FIGURE 8.11

(a) A test image with overlapping directional components at 0°,45°,90°, and
135°. Results of Gabor filtering at 0° after decimation at (b) one-to-one,
(c) two-to-one, and (d) four-to-one. (e) Overall response at 0° after vec-
tor summation as illustrated in Figure 8.10. Figure courtesy of W.A. Rol-
ston [542].
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Y(z,y) L Y (A i DR P (8.73)
L,Y) = X — x| 5 T 5 x| . .
Y 2O, Oy P 2 \ o2 03 Jeam
VYmn(@,y) =a™ ™ ¥(2',y'), a>1, m,n = integers, (8.74)

!

' =a" ™[ (& —x) cosf + (y — yo) sinb],

y" —aq ™ [—(.’1} — 330) sin 0 + (y — yO) COS 9]3

where (z9,yo) is the center of the filter in the spatial domain, § = 57, K is
the total number of orientations desired, and m and n indicate the scale and
orientation, respectively. The scale factor a=™ in Equation 8.74 is meant to
ensure that the energy is independent of m.
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Gabor Filter:
Design Parameters

XZ y2

X y
Gabor parameters

1

2

cos(2z f x)

f—i' o, = 4
:> r " 242In2
X cos® —sin@ | x’
o,=lo,; =| . ,
{y} Lm@ coso }{y}

48



UNIVERSITY OF

CALGARY

Gabor Filters:
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Multiscale Analysis with
CALGARY Gabor Filters: Frequency Response
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The directional
distribution of
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left and right breasts

Analysis of bilateral asymmetry
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(d)

FIGURE 8.20 .
(a) A sample image showing collagen alignment in a normal ligament. Bina- f a n ﬂ / t er 5
rized directional components in the angle band (b) 75° —90°, and (c) 0° — 15°.

(d) Fractional fiber-covered areas in the form a rose diagram. Figure courtesy
of S. Chaudhuri [610]. 53
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(d)

FIGURE 8.21

(a) A sample image showing collagen alignment in ligament scar tissue. Bina-
rized directional components in the angle band (b) 75° —90°, and (c) 0° — 15°.
(d) Fractional fiber-covered areas in the form a rose diagram. Figure courtesy
of S. Chaudhuri [610].
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14 WEEKS

14 WEEKS

(a) (b)

FIGURE 8.22

Sample images showing collagen alignment in ligament samples at three weeks,
six weeks, and 14 weeks after injury: (a) without immobilization of the af-
fected joint, (b) with immobilization of the affected joint for three weeks.
Images courtesy of C.B. Frank. See also Figure 8.23.
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14 WEEKS 14 WEEKS
(a) (b)
FIGURE 8.23

Composite rose diagrams showing collagen realignment in ligament samples at
three weeks, six weeks, and 14 weeks after injury: (a) without immobilization
of the affected joint, (b) with immobilization of the affected joint for three
weeks. See also Figure 8.22. Reproduced with permission from C.B. Frank,
B. MacFarlane, P. Edwards, R. Rangayyan, Z.Q. Liu, S. Walsh, and R. Bray,
“A quantitative analysis of matrix alignment in ligament scars: A comparison
of movement versus immobilization in an immature rabbit model”, Journal
of Orthopaedic Research, 9(2): 219 — 227, 1991. (© Orthopaedic Research
Society.
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FIGURE 8.24

Variation of the entropy of composite rose diagrams with collagen realign-
ment in ligament samples at three weeks, six weeks, and 14 weeks after injury.
The vertical bars indicate 4 one standard deviation about the corresponding
means. “NON”: without immobilization of the affected joint; “3 IMM”: with
immobilization of the affected joint for three weeks; “6 IMM”: with immobi-
lization of the affected joint for six weeks. The shaded region indicates the
range of entropy for normal ligament samples. See also Figures 8.23 and 8.22.
Reproduced with permission from C.B. Frank, B. MacFarlane, P. Edwards,
R. Rangayyan, Z.Q. Liu, S. Walsh, and R. Bray, “A quantitative analysis of
matrix alignment in ligament scars: A comparison of movement versus immo-
bilization in an immature rabbit model”, Journal of Orthopaedic Research,
9(2): 219 — 227, 1991. (© Orthopaedic Research Society.
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« Texture and fractal analysis of biomedical
Images can provide useful features for
computer-aided diagnosis
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