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Outline 

•  The acoustic field 
•  The D’Alambert equation and the Helmholtz equation 
•  General solutions of the homogeneous equation 

•  Plane waves and spherical waves 
•  Solving the inhomogeneous equation 

•  The Green’s function 
•  Boundary conditions 
•  Integral representations for the acoustic field 

•  The Kirchhoff-Helmholtz integral equation 
•  The Single Layer Potential 

•  Geometrical representations for the acoustic field 
•  The Eikonal equation and its solution 
•  Ray geometry and examples 
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The acoustic field 

•  An acoustic field is a real-valued scalar function whose domain 
extends in 
•  Time 
•  Space 

•  The acoustic field is invariant under change of spatial coordinates 
•  The value of the acoustic field in a point is independent on the 

coordinate system adopted to represent that point 
•  Only the mathematical expression for the field as a function of the 

spatial coordinates varies 
•  The Laplace operator describes the curvature of the function in 

space 
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Homogeneous wave equations 

•  Source-free volume 
•  The acoustic field must satisfy the homogeneous D’Alambert 

equation (wave equation)  

•  Assuming time-harmonic behavior 

•  In the frequency domain the acoustic field must satisfy the 
homogeneous Helmholtz equation 
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Plane wave solutions 

•  Look for solutions to the homogeneous Helmholtz equation in 
Cartesian coordinates 
•  Complex exponential function 

•                                is the wavenumber vector 

•  The complex exponential function is a solution only if the wavenumber 
vector satisfies the dispersion relation 
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Propagating plane waves 

•  Real wavenumber vector  
•  Wavefront = set of points of constant phase 

•  Points of constant phase form a plane orthogonal to  
•  The unit vector                      identifies the direction of arrival of 

the plane wave 
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Evanescent plane waves 
•  Assume two components of the wavenumber vector to be real 

•     must satisfy  

•  If  
•             : propagating plane wave 

•  If  
•                             : evanescent plane wave 

•  The acoustic field exhibits exponential decay along the z axis 
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Helmholtz equation in spherical coordinates 

•  Spherical coordinates 
•  Range:  
•  Azimuth:  
•  Co-elevation: 

•  Laplace operator in spherical coordinates 

•  Helmholtz equation in spherical coordinates 
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Spherical wave solutions 

•  Solutions to the homogeneous Helmholtz equation in spherical 
coordinates are obtained by separation of variables 

•  The angular dependency is usually summarized into the spherical 
harmonic function 

•  Frequency independent! 
•  The radial dependency is given in terms of spherical Bessel or 

spherical Hankel functions 
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Inhomogeneous wave equations 

•  Volume with a source distribution 
•  The acoustic field must satisfy the inhomogeneous D’Alambert 

equation 

•  Flow per unit volume 
•  The corresponding inhomogeneous Helmholtz equation is 
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The Green’s function 

•  Solution to the inhomogeneous wave equations when the 
inhomogeneous term is a spatio-temporal impulse at 

•  Solution to the D’Alabmert equation 

•  Solution to the Helmholtz equation 
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The boundary conditions 

•  Boundary conditions are imposed on solutions to the wave equations 
in order to consider the physical properties for the boundary of the 
considered domain 
•  Homogeneous boundary conditions: stationary boundaries 
•  Inhomogeneous boundary conditions: reacting boundaries 

•  Dirichlet boundary conditions 
•  Conditions on the acoustic pressure field 

•  Neumann boundary conditions 
•  Conditions on the directional derivative of the pressure field 

(particle velocity) in the direction normal to the boundary 

13 



The Kirchhoff-Helmholtz integral equation 

 
•  Interpretation:   the sound field in the volume is uniquely determined 

by the sound pressure on the boundary and by its directional 
derivative in the direction normal to the boundary 
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Figure from [Spors2010, Fig. 1] 



The Single Layer Potential 

•  Simplification of the Kirchhoff-Helmholtz integral equation 
•  Discard contributions propagated by the directional derivative of 

the Green’s functions 

•  This integral equation is known as Single Layer Potential 
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Geometrical Acoustics: from waves to rays 16 

	
Helmholtz	equa-on:	
	
General	solu-on	
	
Eikonal	equa-on:	
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Hp: 
•  High frequencies 
•  Non dispersive medium 

Eikonal	equa-on	operates	only	on	the	direc-on													,	
i.e.	the	direc-on	orthogonal	to	the	wavefront										.	
This	direc-on	is	referred		to	as	Acous-c	Ray	
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Geometrical acoustics: ray geometry and 
examples 
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S 
The WF produced by a point-like 
source is described by a multitude 
of rays departing from the source 

S R 

t 

h(t) 

As	they	meet	reflectors,	rays	bounce	
according	to	Snell’s	law	

A	peak	in	the	AIR	denotes	an	acous-c	
path	linking	source	and	receiver	



From acoustic rays to acoustic beams 18 

Non-planar	wavefronts	require	
a	plurality	of	rays	

Acoustic beam: set of all rays that originate 
from the same pt and meet the same 

(planar) obstacle 

S 

reflectors 

beams 

we	need	a	compact	representa-on	
for	bundles	of	rays	



Acoustic beams 19 

•  Effective for describing wave propagation in 
enclosures 

•  Source modeling: any radial pattern can be 
described by a number of uniform beams (piece-
wise constant approximation) 

•  Environment modeling: beams split and/or 
branch out when they interact with reflectors 

•  Suitable for modeling spherical as well as planar 
wavefronts 

•  Inherently open-loop modeling 
•  Natural separation btw  

•  geometric aspects of propagation 
•  auralization  

•  filtering due to propagation, absorption, dispersion, interaction with 
reflectors, etc. 



Acoustic beams: limitations 20 

§  Only	interac-ons	with	the	environment	that	preserve	the	
point-like	nature	of	(real/image)	sources	can	be	directly	
modeled	
•  In	order	to	accommodate	diffusive	surfaces,	we	need	to	introduce	
simplifica-ons	

	
§  Ray-based	representa-ons	are	not	accurate	at	low	frequency	

•  Diffrac-on	causes	wavefield	to	work	around	obstacles	à	Geometrical	
Theory	of	Diffrac-on	(GTD)	
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Outline 

•  The Fourier expansion (inverse Fourier transform) of a 
multidimensional signal: Plane Wave Expansion 
•  Whittaker’s and Weyl’s representations 
•  Beamforming as a Fourier transform 

•  The Fourier series expansion of a multidimensional signal: the 
Spherical Harmonics Expansion 
•  Interior and exterior acoustic fields 
•  Truncation of the Spherical Harmonics Expansion 

•  Relations between plane waves and spherical harmonics 
•  Impact of truncation on the Plane Wave Expansion 

•  Applications 
•  PW-based analysis and rendering 
•  SH-based analysis and rendering 
•  PW-based near field acoustic holography 
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The multidimensional Fourier transform 

•  Consider a multidimensional signal of continuous spatial variables  

•  The Fourier transform over space is 

•  The Inverse Fourier transform over the spatial frequencies is 
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The Whittaker’s Plane Wave Expansion 

•  Propagating plane waves are a solution to the homogeneous 
Helmholtz equation in Cartesian coordinates 

•  The inverse multidimensional Fourier transform of the acoustic 
pressure field is 

•  The wavenumber vector plays the role of the spatial frequency 
•  This expansion is known as Whittaker’s representation 
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Geometric interpretation of Whittaker’s 
representation 

•  Factorize the wavenumber vector as 

•  Substitute the angular factorization for the unit wavenumber vector in 
the Whittaker’s representation 

•  The acoustic field is written as a superposition of propagating 
plane waves 

•  Directions of propagation cover a sphere 
•  The function                    encodes magnitude and phase for each 

plane wave 
•  Does not depend on the observation point 
•  Is known as Herglotz density 
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The Weyl’s Plane Wave Expansion 

•  Consider a non-zero excitation function 

•  The resulting acoustic pressure field must satisfy the inhomogeneous 
Helmholtz equation 

•  The solution to the inhomogeneous Helmholtz equation is constructed 
by means of a superposition of Green’s functions 
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The Weyl’s Plane Wave Expansion 

•  If we substitute the Weyl’s identity in the free-field Green’s function, 
exchange the order of integration and rearrange the terms, we obtain 

•  Twofold integral over real variables 

•  The function                                                     is called angular 
spectrum 
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Geometric interpretation of Weyl’s 
representation 

•  Let us introduce the change of variables 

•  If                              (propagating plane waves) 
•      and       are the spherical angles related to the direction of 

propagation of the plane wave 

•  If                              (evanescent plane waves) 
•      must be a complex angle 

29 



Fourier expansion as beamforming 

•  Discretize the inverse Whittaker’s representation considering a finite 
number of field points  

•  This operation is widely known in the array signal processing 
literature as beamforming 

•  Observations at individual sensors are modulated in order to align 
in phase the directional contribution from direction  
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Spherical Harmonics Expansion 

•  Basis solution to Helmholtz equation in spherical coordinates 

•  Spherical harmonic waves 
•  A general field can be written as the summation of infinite spherical 

harmonic waves 
•  Radial dependence expressed with spherical Hankel functions 

•  Radial dependency expressed with spherical Bessel functions 

•  In both cases the acoustic field is characterized by sets of coefficients 
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Considerations on the radial functions 

•  For  
•  These function are suitable to represent acoustic field due to 

sources near the origin 
•  The function          is suitable to represent acoustic fields in a 

source free region around the origin            
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Considerations on the radial functions 

•  For  
•  These function are suitable to represent acoustic field due to 

sources near the origin 
•  The function          is suitable to represent acoustic fields in a 

source free region around the origin            
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Internal acoustic field 

•  Inverse Spherical harmonics expansion (synthesis) 

•  Spherical harmonics expansion (analysis) 
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External acoustic field 

•  Inverse Spherical harmonics expansion (synthesis) 

•  Spherical harmonics expansion (analysis) 

35 

Internal External 



Bandlimited spherical harmonics expansion 

•  Limit the spherical harmonics expansion to order L-1 

•  The acoustic field is described by        coefficients 
•  For an internal acoustic field  

•  Rule of thumb: the bandlimited expansion provides a reasonable 
approximation is 

•           is the radius of the internal region 
•  Fixed the maximum order of the expansion, the radius of the region of 

validity is inversely proportional to frequency 
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Bandlimited spherical harmonics expansion 
- example 
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Ideal field L=25 

L=12 

From [Ahrens2012, Fig. 2.7] 



Relation between plane waves and spherical 
waves 

•  Spherical harmonics and plane waves are related through the 
Gegenbauer expansion 

•  Expansion coefficients in spherical harmonics and plane wave 
expansion are related by 
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Impact of truncation on the plane wave 
expansion 

•  In practice, the infinite summation in the Gegenbauer expansion is 
replaced with a finite summation up to mode L 

•  The mode-limited plane wave coefficients are 

•  The two representations are bandlimited to 
•   Gibbs phenomena arise in the plane wave spectrum 
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Applications 

•  PW-based analysis and rendering 
•  SH-based analysis and rendering 
•  PW-based near field acoustic holography 

40 



PW-based analysis – Acoustic cameras 

•  Adopt Whittaker’s plane wave representation in the short-time scale 
•  The acoustic field within a short-time frame is represented as an 

integral of propagating plane waves 
•  Discretize the integral representation 
•  Estimate strength, direction of arrival and time of arrival of plane wave 

components 
•  Plane waves are associated to direct sound and early reflections 

41 



High Resolution Acoustic Camera 42 



Imaging in a controlled environment 43 

From
 [B

ianchi2015], fig. 3 



Imaging in a real world environment 44 

From [Bianchi2015], fig. 5 



PW-based rendering – Acoustic displays 

•  Dual to acoustic cameras 
•  Implemented as arrays of loudspeakers that, through beamforming, 

generate plane-wave components 
•  Can be used to focus acoustic energy to specific directions 
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In collaboration with B&C Speakers 



PW-based rendering – Sound field synthesis 46 

From [Bianchi2015a], fig. 8  



SH-based analysis and rendering 

•  Sound field at point r is expressed in terms of spherical harmonics 
(SH) of order n and mode m 

•  Coefficients are independent of location 
•  If one could record them, then the acoustic field could be rendered 

through this expression 
•  Ideally, the spherical harmonic coefficients are computed by 

•  Valid if r is on the surface of a sphere of radius r 
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SH-based analysis and rendering 

•  Approximate the integration by a finite summation 
•  Use Q omnidirectional microphones on a rigid sphere of radius R to 

obtain pressure measurements 

•      are  suitable weights that depend on the quadrature rule 
adopted to sample the sphere with microphones 
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SH-based analysis and rendering 

•  An acoustic field bandlimited to N has                  harmonic 
components 

•  In order to accurately reconstruct a field up to order N one needs Q 
microphones, where  

•  Consider equiangular spacing for microphones 
•  More dense packing near poles 
•                  microphones are not sufficient, one needs at least 

•  Weights are  
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Planar near-field acoustic holography 

•  Adopt Weyl’s representation for the acoustic field measured on a 
plane at height z 

•  In the wavenumber (spatial frequency) domain 
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Holographic prediction 

•  The angular spectrum on the prediction plane        can be expressed 
as a function of the angular spectrum on the holographic plane 

•  The plane wave propagator is   
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Near-field acoustic holography for the estimation 
of the vibrating modes of a violin top-plate 

52 

Equivalent source method: 
Equivalent source method 
involves two steps: 
1.  Given the pressure 

measurement on the 
hologram plane, estimate 
the equivalent sources; 

2.  equivalent sources are 
propagated to compute 
the acoustic pressure 
field on the source plane 



Dictionary-based ESM 53 

ESM cannot guarantee a high level of accuracy if only a few 
measurement points are available and noise is present. 
Solution: 
1.  build a dictionary of vibrating modes under variation of the 

material properties (Poisson ratio, velocity, stiffness, etc.) 
2.  Find the combination of dictionary modes that best explains the 

measurements. 



Dictionary-based ESM 54 

GT: ground truth 
D-ESM: Dictionary-based 
ESM 
ESM: equivalent source 
method 
C: correlation index with GT 
 
Comment: D-ESM turns out 
to overcome ESM 



Dictionary-based ESM 55 

Correlation index of 
different NAH techniques 
as a function of frequency 
 
D-ESM(*): modification of 
D-ESM in which a single 
mode is selected from the 
dictionary 

Correlation index of 
different NAH techniques 
as a function of the Signal 
to Noise Ratio at the 
microphone array 
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Outline 

•  Sharpening the Spherical Harmonic tools 
•  Translation operator 
•  Application of the translation operator for arrays of higher order 

microphones 
•  Sharpening the Plane Wave tools 

•  Fusing information coming from local PWD’s 
•  The plenacoustic function 
•  Representation of the plenacoustic function using geometrical 

acoustics: the ray space 
•  Geometric primitives in the ray space 
•  Fusing multiple sound field images in the projective ray space 
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Sharpening the tools for the SHD 

The validity of SHD is only local 
•  Spherical Harmonic expansion of an acoustic field (referred to a given 

global reference frame centered in     ) 

•  Consider now a new reference frame whose orientation and 
coordinates of the origin are                        . With respect to this new 
frame, the SH expansion can be written as 

•  Problem: how do these two expressions relate to each other? 
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Translator operator for SHD 

•  Relation between the coefficients of the reference frames centered 
in      and         [Chen2015] 
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The translation operator gives us the coefficients of the local  
reference frame as a function of those of the global reference frame 



Application of the translation operator for 
SHD: higher order microphone arrays 

Scenario: spatial distribution of high-order microphones, each using a 
local reference frame 

Goal: reconstruct the global sound field coefficients           from the 
knowledge of the  local coefficients  
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Application of the translation operator for 
SHD: higher order microphone arrays 

•  The direct application of the 
pseudoinverse yields unstable 
results. 

•  By applying K circular higher 
order microphone arrays the 
robustness and precision of 
the microphone system is 
increased: 

63 

1st order mics arranged into four circular 
arrays, placed in (Rs,ϑs) = (0.4, 90◦), 
(0.34, 72◦), (0.28, 108◦) and (0.22, 72◦), 
the number of first order mics on each 
array is 17, 15, 13 and 11, respectively 
[Chen2015] 



Limits of the PWD 

Consider the following acoustic scene: 
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A B 

S 

S’ 
Image source 

Source 

Reflector 

•  The image source S’  is only 
visible to some of the mics of the 
array, therefore a PW analysis 
using the whole array would fail 

•  More generally, PW analysis fails 
when the components are not 
space-invariant [Lalor1968]. 



Work around the PWD limits 
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A B 

S 

S’ 
Image source 

Source 

Reflector 

subarrays 

•  Performing PW analysis on 
subarrays alleviates the 
problem: space invariance will 
now concern only one of the 
subarrays 

•  New issues: 
o  how do we merge the 

information acquired by each 
sub-array? 

o  Which representation of the 
sound field should we use? 



The plenacoustic function 

•  We need a representation of the sound field that describes the plane 
wave components as a function of the spatial location: the 
plenacoustic function                         [Ajdler2003, Ajdler2005, 
Ajdler2006]  

•  The most immediate parameterization of the plenacoustic function is 
in terms of acoustic rays:  we can think of the plane wave component 
passing through          and with direction    as an acoustic ray 

66 

Sound field map: representation of the plenacoustic function 
using the tools of geometrical acoustics 

 



The sound field map 

•  Do we need to use three variables to describe the sound field map, or 
may we reduce the dimensionality? 
•  The Radiance Invariance Law (RIL) states that the acoustic 

radiance is invariant along a ray, i.e. the plenacoustic function is 
constant along the line of direction    , passing through 

•  The dimensionality of the space is therefore the same as that of 
the parameters that describe the ray, i.e. 2 
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We need to find a suitable parameterization for the acoustic rays 



Parameterizations of acoustic rays 

Acoustic ray 

§  Different ways to parameterize rays in 2D: 
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Line parameters 

Slope and intercept 

(global) 
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The Ray Space 

A ray is a point in the projective space P2 

Its coordinates [l1,l2,l3]T form a class of equivalence,  

as [kl1, kl2, kl3]T, k≠0 are all the same ray 

The Euclidean space spanned by  

such homogeneous coordinates  

of lines is called ray space 

l1

l2

l3 (l1,l2,l3)



Geometric primitives in the Ray Space: 
point (sources and receivers) 

Let [x1,x2]T be the Euclidean coordinates of a point in the 

geometric space. Its homogeneous coordinates in P2 are 

x=[x1,x2,1]T 

This point lies on the line l=[l1,l2,l3]T iff xTl=0 

If x lies in the intersection between l1 and l2, it will also lie in the 

intersection between kl1 and kl2 (k≠0) 

 

 

therefore kx will be the same point as x 

This means that x is homogeneous as well 

 

xT kl1( ) = 0
xT kl2( ) = 0

⇒
kxT( ) l1 = 0
kxT( ) l2 = 0



Geometric primitives in the Ray Space: 
Point (sources and receivers) 

A point is identified by the set of all rays that pass through it 

l1

l2

l3

(0,0,0)

P*

 }lxlx) | l,l,l { (lP* 032211321 =++=

In the ray space this set of lines corresponds to a plane 
passing through the origin, whose normal is [x1,x2,1]T 

x

y

P(x,y)



Geometric primitives in the Ray Space: 
Acoustic Reflector 

A (bounded) reflector  

is identified by its  

endpoints A and B 

 

In the ray space this reflector is represented by the set of rays that 

pass through the intermediate points between A and B 

x

y
A

B



Geometric primitives: 
Acoustic reflector 
 

Geometric vs. ray-space representation of the reflector 

x

y
A

B

Geometric space Ray space 

l1

l2

l3

A*

B*

AB*



Geometric primitives: 
Unbounded reflector 

An unbounded reflector  
can be thought of as obtained  
by indefinitely stretching a  
bounded reflector 
 

 
Stretching the reflector  

corresponds to widening  
the corresponding wedge  
(between A* and B*) 
 

 
 
At the end the wedge becomes the whole space 

§  Any ray meets an infinite plane (possibly at infinity) 

A

B

x

y

l1

l2

l3
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Geometric primitives: 
Acoustic beam 

A beam is a connected bundle of rays that originate 
from the same point (source) and fall onto the same 
reflector (or a portion of it) 
§  Note:  the reflector can also be at infinity 

S

b

A

B
As a primitive,  the beam is the  

intersection between other primitives 
§  Set of rays originating from the source  
§  Connected region of the reflector illuminated by the source 

Intersection in geometric (primal) space corresponds to 
an intersection in ray (dual) space 



Geometric primitives: 
The reduced ray space 

AB*

A*

B*

S*

b*

 A reflector is more easily 
represented in a 
reduced (2D) space, 
obtained through an 
arbitrary cross-section 

 
 
Intersection in the reduced 

space 

l1

l2

l3
A*

B*

AB*
AB*

A*
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Measuring the sound field map: 
the Sound Field Camera 
•  In order to measure the sound field map we need to devise a 

measuring methodology 
•  Recall: analogy between the beamforming operation and the plane 

wave decomposition 
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Microphone array

. . .

. . .

Ray Space
representation

Beamforming

. . .

. . .

acquired signals

Soundfield Image
. . .. . .

sub-arrays geometry

pseudospectra
. 
. 
.

. 
. 
.

. 
. 
.

. 
. 
.

Pj(!k, ✓) = hH(!k, ✓)Rj(!k)h(!k, ✓)

m = tan(✓) , qj = dM�W
2 � d(j � 1)

I(m, qj) = Pj(arctan(m))



Examples of sound field images 78 



Issues of sound field imaging:  
Aliasing 
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✓ = arcsin

✓
l�

d
+ sin ✓i

◆
,�⇡/2  ✓ < pi/2 , l 2 Z

From [Marković2013] Aliasing patterns can be 
easily identified: 
•  Nonlinear 
•  Frequency-dependent 
 



Issues of sound field imaging: 
resolution 
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Resolution improves with the number W of mics  
of the sub-arrays. But is it always true? 
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W 2
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Issues of sound field imaging: 
resolution 
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Beampattern (beamformer tf function) of a source at frequency f [Hz] 
coming from θ0=0°, for different subarray sizes 

For large subarrays and high frequencies the beampattern exhibits 
attenuation: the assumption of the sub-array in the far-field fails! 

From
 [M

arković2015] 



Issues of sound field imaging: 
resolution 
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From [Marković2015] 
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Fusing multiple ray spaces: the projective 
ray space 
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The array “sees” the source S from 
a “difficult” angle (m tends to 
infinity), which causes loss of 
resolution in the sound field image 
 
 
 
Using multiple soundfield cameras 
we can be sure that sources are 
always effectively “viewed” 



•  We need a ray space where we 
can fuse the information coming 
from both cameras 

•  The reduced ray space (m,q) is not 
suitable, as not all rays from both 
cameras can be represented (it 
has blind regions) 

•  Use of the projective 
parameterization [3]: 
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Fusing multiple ray spaces: the projective 
ray space 
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Microphone array 2 



Fusing multiple ray spaces: the projective 
ray space 

How can we merge the information coming from multiple cameras? 
•  Change of reference frame for projective coordinates: 

•  Change of reference frame for the ray space: 
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From [Marković2015a] 



Fusing multiple ray spaces: the projective 
ray space 
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From 2D to 3D 

How can we extend from 2D to 3D? 
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( feature detection = local maxima = 
morphological dilation ) 



The Ray Space 88 
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How can we represent rays that propagate in a 3D world? 

•  Rays in 3D are identified by at least four parameters (see 
lightfield representation). 

•  We adopt the (redundant) Plücker parameterization of the 
acoustic rays: 
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Homogeneous coefficients of lines

Oriented projective space

2D
Plücker coordinates of lines

5P2P Oriented projective space

3D

(reduced dimensionality representation)

The Ray Space 
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IpP = {l 2 T5|l = UPa,a 2 T2}

l = u1a1 + u2a2 + u3a3 = UPa

Geometric primitives: acoustic source 
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Given a point                                we define the matrix     L =
h
el1,el2,el3

iT



Source localization in the 3D Ray Space 91 

SUBSPACE 
FITTING 
“Given the clusters 
how do we find the 
source position?” UP = [u1,u2,u3]

X = [x1,x2, ...,xN]
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Unresolved issues 

•  Consider the sound field map of a point source 
•  The length of each subarray is assumed small compared to the 

distance of the acoustic source 
•  Assume far field propagation at subarray level, so that the field 

observed by the ith subarray is 

•     is the angle under which the source is observed by the ith subarray 
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Unresolved issues 

•  Sound field map analysis 

•  Sound field map synthesis 

•  The function              has infinite length, thus it must be truncated  
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Unresolved issues 

•  NMSE due to sound field map synthesis as a function of frequency 

§  Large error at mid-low temporal frequencies 
•  Model mismatch: the sound source is not in the far field of the 

subarrays 
•  Errors due to the truncation of  
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From
 [B

ianchi2016] 
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Outline 

•  From Fourier decomposition to Gabor frames 
•  Frame-based analysis of acoustic fields 

•  The Ray Space Transform (RST) and its inverse 
•  The RST as a wavefield decomposition into tapered beams 
•  Applications 

•  RST-based nearfield plenacoustic cameras 
•  IRST-based nearfield plenacoustic projectors 

•  Beyond acoustics: applications to EM signals 
•  Retrospective 
•  Perspectives 
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From Fourier decomposition to Gabor 
frames 

•  The inverse spatial Fourier transform describes a global 
decomposition of the acoustic field into plane waves 

•  Spatial events are no longer discernible 
•  In the case of Fourier representations of signals, we can overcome this 

problem by using a STFT 
•  Similarly, we can window the acoustic field in the spatial domain before 

applying the Fourier transform, to obtain a more compact representation 
•  We need to define and organize translations of the spatial windows 

which allow us to retain the ability to discern events in space 
•  If we do things right, we should end up with a decomposition of the 

acoustic field in terms of local directional wave objects 
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Frame-based analysis of acoustic fields 

•  Sample the acoustic field with a linear array of microphones 
•  Apply a series of translated spatial window to array data 
•  Modulate each translated window to estimate directional 

contributions 
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The Ray Space Transform: preliminaries 

•  Adopt the ray space as the domain of the transformation 
•  Parametrize directions       by 

•  Phase shift at position z due to a directional contribution from  

•  Adopt uniform grid for sampling the             plane 
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The Ray Space transform of a continuous 
aperture 

•  Gabor transform of aperture data 
•  Evaluate the similarity between the captured acoustic field and 

shifted and modulated copies of a prototype function 

•  Analysis equation 

•  Synthesis equation 
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The Ray Space Transform of a discrete array 

•  Analysis equation 

•  The discrete Ray Space Transform (RST) can be conveniently written 
in matrix form upon introducing the discrete Gabor frame operators 

•  Analysis equation in matrix form 

•  Synthesis equation in matrix form 
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RST Interpretation 

•  Consider the i-th spatial window 

•  The RST can be interpreted as the beamforming operation applied to 
array data 
•  Before beamforming, array data are weighed by a Gaussian 

spatial window function centered at 

•  The i-th row of the matrix      collects the outputs of multiple 
beamforming operations   
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Example: RST of a spherical wave 

•  Acoustic field generated by a point source at                       , observed 
on the z axis  

•  Magnitude of ray space coefficients 
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RST as a wavefield decomposition into 
tapered beams 

•  Acoustic pressure field generated by a continuous distribution of point 
sources on the z axis 
•  Solution to 

•  The function               is the source strength 

•  The solution can be expressed as the Raileigh first integral 
equation  

•  The function                   is the propagation function from a point 
source in z’ to the field point r  
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Application example: multiuser sound field 
rendering 

Provide multiple users with different audio contents using a single 
loudspeaker array 

U1 

U2 

U3 



Application example: multiuser sound field 
rendering 

Provide multiple users with different audio contents using a single 
loudspeaker array 
§  Conventional solutions: array considered as a whole 

U1 

U2 

U3 

•  User 3 is 
overwhelmed by the 
content intended to 
user 2 

•  Unable to manage 
users occlusions  



Application example: multiuser sound field 
rendering 

Provide multiple users with different audio contents using a single 
loudspeaker array 
§  Beam-based solution: freedom to chose beam amplitudes, 

directions and initiation points 

U1 

U2 

U3 

•  Every user is able to 
listen to its intended 
sound content 

•  Beam parameters are 
chosen to minimize 
the beam overlap at 
the locations of the 
users 



Conclusions 

•  Ray-based representations are visually very powerful and effective for solving 
a wide range of problems in a very general fashion 

•  Rays, however, are generally defined and used under the conditions of 
Fourier Acoustics, which can be rather restrictive 

•  Can we enhance such representations and retain their visual power, while 
relaxing the operative conditions under which they function? 

•  In order to do so we need to replace the traditional Fourier decomposition with 
a different one of local validity, which can be thought of as a Short Space-
Time Fourier Transform (SSTFT). This can be done using the theory of Gabor 
Frames 

•  We showed how to define a local signal decomposition for acoustic sound 
fields, we replaced the Fourier transform with a new mapping called Ray 
Space Transform, which 

•  Preserves the visual representation power of Sound Field Mapping (SFM) 
•  Invertible (can be used for analysis as well as synthesis) 
•  Relaxes the operative conditions 

•  Inherently nearfield operation 
•  Extended frequency bandwidth 
•  Ability to discern spatial events 
•  … 
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What’s next 

•  Ray space transform in the 3D domain (radiance complex) 
•  New Gabor frame bases (and related transforms) 
•  New analysis methodologies operating in the ray space 

•  Egomotion estimation, self-calibration 
•  Multi-camera fusion 
•  Nearfield holography 
•  … 

•  Framework development, complete with 
•  Transform blocks 
•  Pattern analysis blocks 
•  Calibration/egomotion 
•  Transcoders from and to other representations 

•  SH, WFS, ambisonics, binaural, ... 
•  New applications that take full advantage of the ray space parameterization 

•  Object-based acoustics 
•  Augmented and mixed realities 
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