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Covariance estimation problem

x : p-variate (centered) random vector

x1, . . . ,xn i.i.d. realizations of x

Problem: Find an estimate Σ̂ = Σ̂({xi}ni=1) of the positive definite
covariance matrix

Σ = E[xx>] ∈ S(p)

Solution: Maximum likelihood, M -estimation.

Conventional estimate: the sample covariance matrix (SCM)

Σ̂ =
1

n

n∑

i=1

xix
>
i

E. Ollila & F. Pascal 3 / 75



Why covariance estimation?

Portfolio selection Discriminant Analysis
The Most Important Applications

graphical models clustering/discriminant analysis

PCA
radar detection
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PCA

The Most Important Applications

graphical models clustering/discriminant analysis

PCA radar detection
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Radar detection

Graphical models

Gaussian graphical model

n-dimensional Gaussian vector

x = (x1, . . . , xn) ∼ N (0,Σ)

xi, xj are conditionally independent (given the rest of x) if

(Σ−1)ij = 0

modeled as undirected graph with n nodes; arc i, j is absent if (Σ−1)ij = 0
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Covariance estimation challenges

1 Insufficient sample support (ISS) case: p > n.
=⇒ Estimate of Σ−1 can not be computed!

2 Low sample support (LSS) (i.e., p of the same magnitude as n)
=⇒ Σ̂ is estimated with a lot of error.

3 Outliers or heavy-tailed non-Gaussian data
=⇒ Σ̂ is completely corrupted.

Problem 1 & 2 = Sparse data
⇒ regularization and/or RMT

Problem 3
⇒ robust estimation
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Why robustness?

1 Outliers difficult to glean from high-dimensional data sets

2 Impulsive measurement environments in sensing systems (e.g., fMRI)

3 SCM is vulnerable to outliers and inefficient under non-Gaussianity

4 Most robust estimators can not be computed in p > n cases
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Matthew R. McKay, Yuri Abramovich, Olivier Besson, Maria
Greco, Fulvio Gini, Daniel Palomar, . . . . . .



I. Ad-hoc shrinkage SCM-s of multiple samples

II. ML- and M -estimators of scatter matrix

III. Geodesic convexity

IV. Regularized M -estimators

V. Penalized estimation of multiple covariances



Multiple covariance estimation problem

We are given K groups of elliptically distributed measurements,

x11, . . . ,x1n1 , . . . , xK1, . . . ,xKnK

Each group Xk = {xk1, . . . ,xknk
} containing nk p-dimensional

samples, and

N =

K∑

i=1

nk = total sample size

πk =
nk
N

= relative sample size of the k-th group

Sample populations follow elliptical distributions, Ep(µk,Σk, gk), with
different scatter matrices Σk possessing mutual structure or a joint
center Σ ⇒ need to estimate both {Σk}Kk=1 and Σ.

We assume that symmetry center µk of populations is known or that
data is centered.
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Ad-hoc regularization approach

Gaussian MLE-s of Σ1, . . . ,ΣK are the SCM-s S1, . . . ,SK

If nk small relative to p, common assumption is Σ1 = . . . = ΣK

which is estimated by pooled SCM

S =

K∑

k=1

πkSk.

Rather than assume the population covariance matrices are all equal
(hard modeling), simply shrink them towards equality (soft modeling):

Sk(β) = βSk + (1− β)S,

e.g., as in [Friedman, 1989], where β ∈ (0, 1) is a regularization
parameter, commonly chosen by cross-validation.

If the the total sample size N is also small relative to dimension p,
then Friedman recommends also shrinking the pooled SCM S towards
∝ I.
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Regularized covariance matrices

Q1 Can the Ad-Hoc method be improved or some theory/formalism put
behind it?

Q2 Robustness and resistance, e.g., non-Gaussian models and outliers.

Q3 Methods other then convex combinations?

Q4 Shrinkage towards other models?

- E.g., proportional covariance matrices instead of common
covariance matrices?

- Other types of shrinkage to the structure?
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Q1: Some formalism to the Ad-Hoc method

Gaussian ML cost function (−2× neg. log-likelihood) for the kth
class:

LG,k(Σk) = Tr(Σ−1k Sk)− log |Σ−1k |

has a unique minimizer at Σ̂k = Sk (= SCM of the kth sample).

Penalized objective function: Add a penalty term and solve

min
Σk∈S(p)

{
LG,k(Σk) + λ d(Σk, Σ̂)

}
, k = 1, . . .K,

where

λ > 0 is penalty/regularization parameter
d(A,B) : S(p)× S(p)→ R+

0 is penalty/distance function
minimized whenever A = B

Idea: Penalty shrinks Σ̂k towards (fixed) shrinkage target matrix
Σ̂ ∈ S(p), the amount of shrinkage depends on magnitude of λ
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Q1: Some formalism to the Ad-Hoc method

The information theoretic Kullback-Leibler (KL) divergence
[Cover and Thomas, 2012], distance from Np(0,A) to Np(0,B) is

dKL(A,B) = Tr(A−1B)− log |A−1B| − p,

As is well known, it verifies dKL(A,B) ≥ 0 and = 0 for A = B.

Using dKL(Σk, Σ̂) as the penalty, the optimization problem
LG,k(Σk) + λ dKL(Σk, Σ̂) possesses a unique solution given by

Sk(β) = βSk + (1− β)Σ̂, k = 1, . . . ,K

where β = (1 + λ)−1 ∈ (0, 1) and k = 1, . . . ,K.

This gives Friedman’s Ad-Hoc shrinkage SCM estimators when the
shrinkage target matrix Σ̂ is the pooled SCM S
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Discussion

Note: The Gaussian likelihood LG,k(Σk) is convex in Σ−1k and so is

dKL(Σk, Σ̂).

Comments

Other (non-Gaussian) ML cost functions Lk(Σ) are commonly not
convex in Σ−1

Swapping the order dKL(Σk, Σ̂) to dKL(Σ̂,Σk) gives a distance
function that is non-convex in Σ−1k .

Problems

The penalized optimization program, LG,k(Σk) + λ dKL(Σk, Σ̂), does
not seem to generalize to using other distance functions or other
non-Gaussian cost functions.

KL-distance dKL(Σk,Σ) is not so useful when the assumption is
Σk ∝ Σ, i.e., proportional covariance matrices.
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How about a robust Ad-hoc method?

Plug-In Robust Estimators: Let Σ̂k and Σ̂ represent robust
estimates of scatter (covariance) matrix for the kth class and the
pooled data respectively.

Then a robust version of Friedman’s approach is given by

Σ̂k(β) = βΣ̂k + (1− β)Σ̂, k = 1, . . . ,K

where β ∈ (0, 1).

Problems: This approach fails since many robust estimators of
scatter, e.g. M, S, MM, MCD, etc., are not defined or do not vary
much from the sample covariance when the data is sparse.
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Our approach in Part A of the tutorial

Regularization via jointly g-convex distance functions

Robust M-estimation (robust loss fnc downweights outliers)
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Elliptically symmetric (CES) distribution

x ∼ Ep(0,Σ, g) : p.d.f. is

f(x) ∝ |Σ|−1/2g
(
x>Σ−1x

)

Σ ∈ S(p), unknown positive definite p× p scatter matrix parameter.

g : R+
0 → R+, fixed density generator.

When the covariance matrix exists: E[xx>] = Σ.

Example: Normal distribution Np(0,Σ) has p.d.f.

f(x) = π−p/2|Σ|−1/2 exp
(
− 1

2
x>Σ−1x

)
.

Elliptical distribution with g(t) = exp(−t/2).
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The maximum likelihood estimator (MLE)

{xi} iid∼ Ep(0,Σ, g), where n > p.

The MLE Σ̂ ∈ S(p) minimizes the negative log-likelihood fnc

L(Σ) =
1

n

n∑

i=1

ρ(x>i Σ−1xi)− ln |Σ−1|

where ρ(t) = −2 ln g(t) is the loss function.

Critical points are solutions to estimating equations

Σ̂ =
1

n

n∑

i=1

u(x>i Σ̂
−1

xi)xix
>
i

where u(t) = ρ′(t) is the weight function.

MLE = ”an adaptively weighted sample covariance matrix”
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M-estimators of scatter matrix

Σ̂ =
1

n

n∑

i=1

u(x>i Σ̂
−1

xi)xix
>
i

[Maronna, 1976]

Among the first proposals for robust covariance matrix estimators

Generalizations of ML-estimators:

u(t) = ρ′(t) non-neg., continuous and non-increasing.

(admits more general ρ fnc’s)

ψ(t) = tu(t) strictly increasing ⇒ unique solution

Not too much data lies in some sub-space ⇒ solution exists
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Huber’s M-estimator

[Maronna, 1976] defined it as an M -estimator with weight fnc

uH(t; c) =

{
1/b, for t 6 c2

c2/(tb), for t > c2

where c > 0 is a tuning constant, chosen by the user,and b is a
scaling factor used to obtain Fisher consistency at Np(0,Σ).

It is also an MLE with loss function [Ollila et al., 2016]:

ρH(t; c) =

{
t/b for t 6 c2,

(c2/b)
(

log(t/c2) + 1
)

for t > c2.

Note: a Gaussian distribution in the middle, but have tails that die
down at an inverse polynomial rate. Naturally, uH(t; c) = ρ′H(t; c).
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Tyler’s (1987) M-estimator

Distribution-free M -estimator (under elliptical distributions)

Defined as a solution to

Σ̂ =
p

n

n∑

i=1

xix
>
i

x>i Σ̂
−1

xi

⇒ so an M -estimator with Tyler’s weight fnc u(t) = ρ′(t) = p/t

Now it is also known that Σ̂ ∈ S(p) minimizes the cost fnc

LT(Σ) =
1

n

n∑

i=1

p ln(x>i Σ−1xi)︸ ︷︷ ︸
ρ(t) = p ln t

− ln |Σ−1|

Note: not an MLE for any elliptical density, so ρ(t) 6= −2 ln g(t) !

Not convex in Σ ! . . . or in Σ−1

Maronna’s/Huber’s conditions does not apply.
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Tyler’s M-estimator, cont’d

Σ̂ =
p

n

n∑

i=1

xix
>
i

x>i Σ̂
−1

xi

Comments:

1 Limiting case of Huber’s M -estimator when c→ 0

2 Minimum is a unique up to a postive scalar: if Σ̂ is a minimum then
so is bΣ̂ for any b > 0

⇒ Σ̂ is a shape matrix estimator. We may choose a solution which
verifies |Σ̂| = 1.

3 A Fisher consistent estimator at Np(0,Σ) can be obtained by scaling

any minimum Σ̂ by

b = Median{x>i Σ̂
−1

xi; i = 1, . . . , n}/Median(χ2
p).

This scaling is utilized in discriminant analysis later on.
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Tyler’s M-estimator, cont’d

cΣ̂ =
p

n

n∑

i=1

xix
>
i

x>i (cΣ̂)−1xi
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From Euclidean convexity to Riemannian convexity

A set S is convex . . .

. . . if ∀x0,x1 ∈ S and t ∈ [0, 1]:

(1− t)x0 + tx1 ∈ S.

. . . if together with x0 and x1, it contains the
shortest path (goedesic) connecting them

convex

x1

S

t = 0

x0

1
2t =

t = 1

What is Convexity?

We say that a set is convex if

∀ x, y ∈ S and ∀ t ∈ [0,1] ∶ tx + (1 − t)y ∈ S,
or, if together with x and y, it contains the shortest path connecting them.

In Euclidean metric with the norm

∥x∥ = √∑
j

x2j ,

the shortest curves are line segments, but
if we change metric, the notion of
convexity changes, since the “shortest
path” (called geodesic) alters.
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Geodesic convexity in p = 1 variable

convex function in x ∈ R:

f(x) = ρ(ex), x = log(σ2)

f
(

(1− t)x0 + tx1︸ ︷︷ ︸
line

)
≤ (1− t)f(x0) + tf(x1)

g-convex function in σ2 ∈ R+
0 :

ρ(σ2) = f(log σ2), σ2 = ex

ρ
( (
σ20
)(1−t)(

σ21
)t

︸ ︷︷ ︸
geodesic

)
≤ (1− t)ρ(σ20) + tρ(σ21)

Convex in x = log σ2 w.r.t. (1− t)x0 + tx1 is equivalent to g-convex

in σ2 w.r.t. σ2t =
(
σ20
)(1−t)(

σ21
)t

.

But for Σ ∈ S(p), p 6= 1, the solution is not a simple change of
variables.
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variables.
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Geodesic (g−)convexity
On the Riemannian manifold of positive definite matrices, the

geodesic (shortest) path from Σ0 ∈ S(p) to Σ1 ∈ S(p) is

Σt = Σ
1/2
0

(
Σ
−1/2
0 Σ1Σ

−1/2
0

)t
Σ

1/2
0 for t ∈ [0, 1].

where Σt ∈ S(p) for 0 ≤ t ≤ 1 ⇒ S(p) forms a g-convex set (= all
geodesic paths Σt lie in S(p)).

Main idea: change the parametric path going from Σ0 to Σ1.

Midpoint of the path, Σ1/2:= Riemannian (geometric) mean between
Σ0 and Σ1.

For p = 1, the path is σ2t = (σ20)1−t(σ21)t and the midpoint is the
geometric mean

σ21/2 =
√
σ20σ

2
1 = exp

{1

2

[
ln(σ20) + ln(σ21)

]}
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Riemannian manifold

Geodesics: informally, shortest paths on a manifold (surface)

Space of symmetric matrices equipped with inner product

〈A,B〉 = Tr(AB) = vec(A)>vec(B)

and associated Frobenius norm ‖ · ‖F =
√
〈·, ·〉 is a Euclidean space

of dimension p(p+ 1)/2.

Instead, view covariance matrices as elements of a Riemannian
manifold

Endow S(p) with the Riemannian metric

local inner product 〈A,B〉Σ on the tangent space of symmetric
matrices

〈A,B〉Σ = 〈Σ−1/2AΣ−1/2,Σ−1/2BΣ−1/2〉
= Tr(AΣ−1BΣ−1) = vec(A)>(Σ−1 ⊗Σ−1)vec(B)

Geodesic path Σt is the shortest path from Σ0 to Σ1.
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Geodesically (g-)convex function
A function h : S(p)→ R is g-convex function if

h(Σt) ≤ (1− t) h(Σ0) + t h(Σ1) for t ∈ (0, 1).

If the inequality is strict, then h is strictly g-convex.

Note: Def. of convexity of h(Σ) remains the same, i.e., w.r.t. to given
path Σt. Now geodesic instead of Euclidean path.

g-convexity = convexity w.r.t. geodesic paths

Local is Global

1 any local minimum of h(Σ) over S(p) is a global minimum.

2 If h is strictly g-convex and a minimum is in S(p), then it is a unique
minimum.

3 g-convex + g-convex = g-convex

Geodesic convexity g-convex functions E. Ollila & F. Pascal 29 / 75



Useful results on g-convexity: my personal top 3

Σt = Σ
1/2
0

(
Σ
−1/2
0 Σ1Σ

−1/2
0

)t
Σ

1/2
0

1. Joint diagonalization formulation

The geodesic path can be written equivalently as

Σt = EDtE>, t ∈ [0, 1],

where Σ0 = EE> and Σ1 = EDE> by joint diagonalization.

E is a nonsingular square matrix: row vectors of E−1 are the
eigenvectors of Σ−10 Σ1

D is a diagonal matrix: diagonal elements are the eigenvalues of

Σ−10 Σ1 or Σ
−1/2
0 Σ1Σ

−1/2
0 .
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Useful results on g-convexity: my personal top 3

Σt = Σ
1/2
0

(
Σ
−1/2
0 Σ1Σ

−1/2
0

)t
Σ

1/2
0

2. Convexity w.r.t. t

A continuous function f on a g-convex set M is g-convex if f(Σt) is
classically convex in t ∈ [0, 1]

3. Midpoint convexity

A continuous function on f on a g-convex set M is g-convex if

f(Σ1/2) ≤
1

2
{f(Σ0) + f(Σ1)}

for any Σ0,Σ1 ∈M.

For more results, see [Wiesel and Zhang, 2015]
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Some geodesically (g-)convex functions

1 if h(Σ) is g-convex in Σ, then it is g-convex in Σ−1.

scalar case: if h(x) is convex in x = log(σ2) ∈ R, then it is convex in
−x = log(σ−2) = − log(σ2).

2 ± log |Σ| is g-convex. (i.e., log-determinant is g-linear function)

scalar case: the scalar g-linear function is the logarithm.

3 a>Σ±1a is strictly g-convex (a 6= 0).

4 log |∑n
i=1 HiΣ

±1Hi| is g-convex.

scalar case: log-sum-exp function is convex.

5 if f(Σ) is g-convex, then f(Σ1 ⊗Σ2) is jointly g-convex.
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Example: Tyler’s M-estimator of shape
Let’s minimize Tyler’s cost function LT(Σ) = LT(σ22, σ12) over g-convex
set of 2× 2 shape matrices:

M(2) = {Σ ∈ S(2) : det(Σ) = 1}

=

{(
σ21 σ12
σ12 σ22

)
: σ22 > 0, σ12 ∈ R, σ21 =

1 + σ212
σ22

}

We generated a Gaussian sample of length n = 15 with σ22 = σ12 = 1.

<2
2

0.5 1 1.5 2 2.5

<
1
2

-0.5

0

0.5

1

1.5

2

2.5

min
Σ∈M(2)

n∑

i=1

ln(x>i Σ−1xi)

︸ ︷︷ ︸
=LT(Σ)

Contours of LT(Σ)
and the solution Σ̂.
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M(2) = {Σ ∈ S(2) : det(Σ) = 1}
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{(
σ21 σ12
σ12 σ22

)
: σ22 > 0, σ12 ∈ R, σ21 =

1 + σ212
σ22

}

We generated a Gaussian sample of length n = 15 with σ22 = σ12 = 1.

'0

'1

<2
2

0.5 1 1.5 2 2.5

<
1
2

-0.5

0

0.5

1

1.5

2

2.5

min
Σ∈M(2)

n∑

i=1

ln(x>i Σ−1xi)

︸ ︷︷ ︸
=LT(Σ)

Consider two points
Σ0 and Σ1 of M.

Geodesic convexity g-convex functions E. Ollila & F. Pascal 33 / 75



Example: Tyler’s M-estimator of shape
Let’s minimize Tyler’s cost function LT(Σ) = LT(σ22, σ12) over g-convex
set of 2× 2 shape matrices:

M(2) = {Σ ∈ S(2) : det(Σ) = 1}

=

{(
σ21 σ12
σ12 σ22

)
: σ22 > 0, σ12 ∈ R, σ21 =

1 + σ212
σ22

}
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'1
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<2
2

0.5 1 1.5 2 2.5

<
1
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0

0.5

1

1.5

2

2.5

min
Σ∈M(2)

n∑

i=1

ln(x>i Σ−1xi)

︸ ︷︷ ︸
=LT(Σ)

Their geodesic path
Σt and midpoint Σ1/2
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0.5 1 1.5 2 2.5
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1
2

-0.5

0

0.5

1

1.5

2

2.5

min
Σ∈M(2)

n∑

i=1

ln(x>i Σ−1xi)

︸ ︷︷ ︸
=LT(Σ)

By utilizing the proper
(Riemannian) metric,
Tyler’s cost fnc is
convex.
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Examples of g-convex sets

g-convex set M = all geodescic paths Σt lie in the set, where

Σt = Σ
1/2
0

(
Σ
−1/2
0 Σ1Σ

−1/2
0

)t
Σ

1/2
0 for t ∈ [0, 1].

and Σ0 and Σ1 are in M.

1 The set of PDS matrices: M = Sp
2 The set of PDS shape matrices: M = {Σ ∈ Sp : det(Σ) = 1}
3 The set of PDS block diagonal matrices.

4 Kronenecker model Σ = Σ1 ⊗Σ2

5 Complex circular symmetric model:

Σ =

(
Σ1 Σ2

−Σ2 Σ1

)

6 PDS circulant matrices, e.g., [Σ]ij = ρ|i−j|, ρ ∈ (0, 1).
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I. Ad-hoc shrinkage SCM-s of multiple samples

II. ML- and M -estimators of scatter matrix

III. Geodesic convexity

IV. Regularized M -estimators
Shrinkage towards an identity matrix
Shrinkage towards a target matrix
Estimation of the regularization parameter

V. Penalized estimation of multiple covariances
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Regularized M-estimators of scatter matrix:
shrinkage towards identity

Penalized cost function:

Lα(Σ) =
1

n

n∑

i=1

ρ(x>i Σ−1xi)− ln |Σ−1|+ αP(Σ)

where α ≥ 0 is a fixed regularization parameter.
Q: Existence, Uniqueness, computation?

Our penalty function pulls Σ away from singularity

P(Σ) = Tr(Σ−1)

Condition 1. [Zhang et al., 2013, Ollila and Tyler, 2014]

ρ(t) is nondecreasing and continuous for 0 < t <∞.

ρ(t) is g-convex (i.e., ρ(ex) is convex in −∞ < x <∞)

Note: Tyler’s, Huber’s, Gaussian loss fnc ρ(t) satisfies Cond. 1.
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Main results

Lα(Σ) =
1

n

n∑

i=1

ρ(x>i Σ−1xi)− ln |Σ−1|+ αTr(Σ−1), α > 0

Result 1 [Ollila and Tyler, 2014]

Assume ρ(t) satisfies Condition 1.

(a) Uniqueness: Lα(Σ) is strictly g-convex in Σ ∈ S(p)

(b) Existence: If ρ(t) is bounded below, then the solution to Lα(Σ)
allways exists and is unique.

(c) Furthermore, if ρ(t) is also differentiable, then the minimum
corresponds to the unique solution of the regularized M -estimating
equation:

Σ̂ =
1

n

n∑

i=1

u(x>i Σ̂
−1

xi)xix
>
i + αI
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Main results (cont’d)

Result 1 implies

u(t) need not be nonincreasing

Unlike the non-regularized case, no conditions on the data are needed!

→ breakdown point is = 1.

Result 1(d) [Ollila and Tyler, 2014, Theorem 2]

Suppose ρ(t) is continuously differentiable, satisfies Condition 1 and that
u(t) = ρ′(t) is non-increasing, Then the Fixed-point (FP) algorithm

Σ̂k+1 =
1

n

n∑

i=1

u(x>i Σ̂
−1
k xi)xix

>
i + αI

converges to the solution of regularized M -estimating equation given in
Result 1(c).
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Tuning the ρ(t) function

Result 1 is general and allows us to tune the ρ(t) function

For a given ρ-function, a class of tuned ρ-functions are defined as

ρβ(t) = βρ(t) for β > 0.

where β represents additional tuning constant which can be used to
tune the estimator towards some desirable property.

Using ρβ(t) = βρ(t), our optimization program is

Lα,β(Σ) = β
1

n

n∑

i=1

ρ(x>i Σ−1xi)− ln |Σ−1|+ αTr(Σ−1)

The solution verifies

Σ̂ = β
1

n

n∑

i=1

u(x>i Σ̂
−1

xi)xix
>
i + αI

Special cases: α = 1− β or β = (1− α).
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A class of regularized SCM’s

Let use tuned Gaussian cost fnc ρ(t) = βt, where β > 0 is a fixed
tuning parameter.

The penalized cost fnc is then

Lα,β(Σ) = Tr
{

(βS + αI)Σ−1
}
− ln |Σ−1|

where S denotes the SCM.

Due to Result 1 , its unique minimizer Σ̂ is

Σ̂α,β = βS + αI

which corresponds to [Ledoit and Wolf, 2004] shrinkage estimator.

Note: Ledoit-Wolf did not show that Σ̂α,β solves an penalized
Gaussian optimization program.
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A class of regularized Tyler’s M-estimators

Let use tuned Tyler’s cost fnc ρ(t) = pβ log t for fixed 0 < β < 1.

The penalized Tyler’s cost fnc is

Lα,β(Σ) =
β

n

n∑

i=1

log(x>i Σ−1xi)− ln |Σ−1|+ αTr(Σ−1),

The weight fnc is u(t) = pβ/t, so the regularized M -estimating eq. is

Σ̂ = β
p

n

n∑

i=1

xix
>
i

x>i Σ̂
−1

xi
+ αI

We commonly use α = 1− β.

Target Lα,β(Σ) is g-convex in Σ, but ρ is not bounded below

⇒ Result 1(b) , for existence does not hold.

Conditions for existence needs to be considered separately for Tyler’s
M -estimator;
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(Sufficient) Condition A. For any subspace V of Rp,
1 ≤ dim(V) < p, the inequality

#{xi ∈ V}
n

<
dim(V)

pβ

holds. [(Necessary) Condition B: As earlier but with inequality.]

Cond A implies β < n/p whenever the sample is in “general position”
(e.g., when sampling from a continuous distribution)

Result 2 [Ollila and Tyler, 2014]

Consider tuned Tyler’s cost ρβ(t) = pβ ln t and α > 0, 0 ≤ β < 1. If

Condition A holds, then Lα,β(Σ) has a unique minimum Σ̂ in S(p), the
minimum being obtained at the unique solution to

Σ̂ = β
p

n

n∑

i=1

xix
>
i

x>i Σ̂
−1

xi
+ αI,

Similar result was found independently in
[Pascal et al., 2014, Sun et al., 2014].
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For fixed 0 < β < 1, consider two different values α1 and α2, and let
Σ̂1 and Σ̂2 represent the respective regularized Tyler’s M -estimators.

It then follows that
Σ̂1 =

α1

α2
· Σ̂2

⇒ for any fixed 0 < β < 1, the regularized Tyler’s M -estimators are
proportional to one another as α varies.

Consequently, when the main interest is on estimation of the
covariance matrix up to a scale, one may set w.lo.g.

α = 1− β [or equivalently β = 1− α ].

In these cases, it holds that Tr(Σ̂
−1

) = p.
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Related approach for regularizing Tyler’s
M-estimator

A related regularized M -Tyler’s estimator was proposed by
[Abramovich and Spencer, 2007] as the limit of the algorithm

Σk+1 ← (1− α)
p

n

n∑

i=1

xix
>
i

x>i V−1k xi
+ αI

Vk+1 ← pΣk+1/Tr(Σk+1),

where α ∈ (0, 1] is a fixed regularization parameter.

[Chen et al., 2011] proved that the recursive algorithm above
converges to a unique solution regardless of the initialization.
[Convergence means convergence in Vk and not necessarily in Σk.]

Note 1: essentially a diagonally loaded version of the fixed-point
(FP) algorithm for Tyler’s M -estimator. Hence we call th estimator
as DL-FP estimator.

Note 2: DL-FP was not shown to be a solution to any penalized
form of Tyler’s cost function.
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Shrinkage towards a target matrix

Fixed shrinkage target matrix T ∈ S(p)

Define penalized M -estimator of scatter matrix as solution to

min
Σ∈S(p)

{L(Σ) + λ d(Σ,T)} ,

or equivalently,

min
Σ∈S(p)

{βL(Σ) + (1− β)d(Σ,T)} , where λ =
1− β
β

where

λ > 0 or β ∈ (0, 1] is a regularization/penalty parameter
d(A,B) : S(p)× S(p)→ R+

0 is penalty/distance fnc.

Distance d(Σ,T) is used to enforce similarity of Σ to target T and β
controls the amount of shrinkage of solution Σ̂ towards T.
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Properties of the penalty (distance) function

D1 d(A,B) = 0 if A = B,

D2 d(A,B) is jointly g-convex

D3 symmetry: d(A,B) = d(B,A).

D4 affine invariance d(A,B) = d(CAC>,CBC>), ∀ nonsingular C

D5 scale invariance: d(c1A, c2B) = d(A,B) for c1, c2 > 0,

Comments:

D3-D5 are considered optional properties

Property D5 is needed for shape matrix estimators (e.g. Tyler’s). It is
also important if Σk-s share a common shape matrix only.

Note: Each distance d(Σk,Σ) induce a notion of mean (or center).

⇒ one might expect that a judicious choice of d(·, ·) should induce a
natural notion of the mean of pos. def. matrices.
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The induced mean or center

Let {Σk}Kk=1 be given matrices in S(p)

Let weights π = (π1, . . . , πK),
∑K

k=1 πk = 1, be given.

Then

Σ(π) = arg min
Σ∈S(p)

K∑

i=1

πk d(Σk,Σ),

is a weighted mean associated with distance (penalty) d.

Q: What is a natural mean of positive definite matrices.

If p = 1, so we have σ21, . . . , σ
2
K > 0, we could consider

arithmetic mean σ2 = 1
K

∑K
k=1 σ

2
k.

geometric mean σ2 =
(
σ21 · · ·σ2K

)1/K

harmonic mean σ2 =
(

1
K

∑K
k=1(σ

2
k)
−1
)−1

Note: For a pair σ20, σ
2
1, the geometric mean is the midpoint of the

geodesic σ2t = (σ20)1−t(σ21)t.
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Let weights π = (π1, . . . , πK),
∑K

k=1 πk = 1, be given.

Then

Σ(π) = arg min
Σ∈S(p)

K∑

i=1

πk d(Σk,Σ),

is a weighted mean associated with distance (penalty) d.

Q: What is a natural mean of positive definite matrices.

If p = 1, so we have σ21, . . . , σ
2
K > 0, we could consider

arithmetic mean σ2 = 1
K

∑K
k=1 σ

2
k.

geometric mean σ2 =
(
σ21 · · ·σ2K

)1/K

harmonic mean σ2 =
(

1
K

∑K
k=1(σ

2
k)
−1
)−1

Note: For a pair σ20, σ
2
1, the geometric mean is the midpoint of the

geodesic σ2t = (σ20)1−t(σ21)t.
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So for p > 1 what penalties could one use?

Frobenius distance

dF(Σk,Σ) =
{

Tr[(Σk −Σ)2]
}1/2

gives the standard weighted arithmetic mean ΣF(π) =
∑K

k=1 πkΣk.

. . . but not g-convex!

X Riemannian distance dR(A,B)

X Kullback-Leibler (KL) divergence dKL(A,B)

X Ellipticity distance dE(A,B)

Note: there are also some other distances that are jointly g-convex,
and hence fit our framework, e.g., S-divergence of [Sra, 2011].
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Riemannian distance

Riemannian distance

dR(A,B) = ‖ log(A−1/2BA−1/2)‖2F,

is the length of the geodesic curve between A and B.

The induced mean, called the Riemannian (or Karcher) mean is a
unique solution to [Bhatia, 2009]

K∑

k=1

πk log(Σ
1/2
R Σ−1k Σ

1/2
R ) = 0

/ No closed-form solution: a number of complex numerical approaches
have been proposed in the literature.
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Kullback-Leibler (KL) divergence

dKL(A,B) = Tr(A−1B)− log |A−1B| − p

KL-distance verifies dKL(A,B) ≥ 0 and = 0 for A = B.
utilized as shrinkage penalty in [Sun et al., 2014].

Result 3 [Ollila et al., 2016]

dKL(A,B) is jointly strictly g-convex and affine invariant and the mean
based on it has a unique solution in closed form:

ΣI(π) = arg min
Σ∈S(p)

K∑

i=1

πk dKL(Σk,Σ)

=

(
K∑

k=1

πkΣ
−1
k

)−1
,

which is a weighted harmonic mean of PDS matrices.
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Special case: target matrix T = I

If the shrinkage target is T = I, then the criterion using KL-distance

LKL,β(Σ) = βL(Σ) + (1− β)dKL(Σ, I)

=β

{
1

n

n∑

i=1

ρ(x>i Σ−1xi)− ln |Σ−1|
}

+ (1− β) {Tr(Σ−1)− ln |Σ−1|}︸ ︷︷ ︸
dKL(Σ,I)

looks closely similar to the optimization program which we studied
earlier:

Lα,β(Σ) = β
1

n

n∑

i=1

ρ(x>i Σ−1xi)− ln |Σ−1|+ αTr(Σ−1),

which utilized the penalty P(Σ) = Tr(Σ−1) and a tuned ρ-function
ρβ(t) = βρ(t), β > 0.
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Special case: target matrix T = I (cont’d)

Note that

Lα,β(Σ) = β
1

n

n∑

i=1

ρ(x>i Σ−1xi)− ln |Σ−1|+ αTr(Σ−1)

= β

{
1

n

n∑

i=1

ρ(x>i Σ−1xi)− ln |Σ−1|
}

︸ ︷︷ ︸
=L(Σ)

−(1− β) ln |Σ−1|+ αTr(Σ−1)

This shows that Lα,β(Σ) = LKL,β(Σ) when α = 1− β
Thus results given earlier (e.g. Result 1(b) ) transfer directly to
penalization using KL-penalty.
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Ellipticity distance

dE(A,B) = p log
1

p
Tr(A−1B)− log |A−1B|

dE is scale invariant. Note: Scale invariance is a useful property for

estimators that are scale invariant, e.g., Tyler’s M -estimator.

utilized as shrinkage penalty in [Wiesel, 2012]
Related to ellipticity factor, e(Σ) = 1

pTr(Σ)/|Σ|1/p, the ratio of the
arithmetic and geometric means of the eigenvalues of Σ.

Result 4 [Ollila et al., 2016]

dE(A,B) is jointly g-convex and affine and scale invariant. The induced
mean is unique (up to a scale) and solves

ΣE =

(
K∑

k=1

πk
pΣ−1k

Tr(Σ−1k ΣE)

)−1
,

which is an (implicitly) weighted harmonic mean of normalized Σk-s.
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Critical points

min
Σ∈S(p)

{βL(Σ) + (1− β)d(Σ,T)} , β ∈ (0, 1]

Write P0(Σ) = d(Σ,T) and P ′0(Σ) = ∂P(Σ)/∂Σ−1.
The critical points then verify

0 = β

{
1

n

n∑

i=1

u(x>i Σ−1xi)xix
>
i −Σ

}
+ (1− β)P ′0(Σ)

⇔ βΣ = β
1

n

n∑

i=1

u(x>i Σ−1xi)xix
>
i + (1− β)P ′0(Σ)

⇔ Σ = β
1

n

n∑

i=1

u(x>i Σ−1xi)xix
>
i + (1− β){P ′0(Σ) + Σ}.

For P0(Σ) = dKL(Σ,T) = Tr(Σ−1T)− log |Σ−1T| − p, this gives

Σ = β
1

n

n∑

i=1

u(x>i Σ−1xi)xix
>
i + (1− β)T.
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Estimation of the regularization parameter

Let us consider the regularized M -estimator [Ollila and Tyler, 2014]
with shrinkage towards an identity matrix:

Σ̂ = β
1

n

n∑

i=1

u(x>i Σ̂
−1

xi)xix
>
i + αI

For simplicity, tune only one parameter and set:

β = (1− α), α ∈ (0, 1) or α = (1− β), β ∈ (0, 1).

Approaches:

1 Cross-validation
2 Oracle/Clairvoyant approach
3 Expected likelihood approach

[Abramovich and Besson, 2013, Besson and Abramovich, 2013]
4 Random matrix theory (more in Frederic’s talk after the break).

Approaches 2 and 3 are especially useful for Tyler’s M -estimator.
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Cross-validation (CV)
Partition X = {x1, . . . ,xn} into Q separate sets of similar size
I1 ∪ I2 ∪ · · · ∪ IQ = {1, . . . , n} ≡ [n]

Common choises: Q = 5, 10 or Q = n (leave-one-out CV).

Taking qth fold out (all xi, i ∈ Iq) gives a reduced data set X−q.

CV procedure (assuming α = 1− β) proposed in [Ollila et al., 2016]:

1 for β ∈ [β] (= a grid of β values in (0, 1)) and q ∈ {1, . . . , Q} do
Compute regularized M -estimator based on X−q, denoted

Σ̂(β, q)
CV fit for β is computed over the qth folds that were left out:

CV(β, q) =
∑

q̃∈Iq

ρ
(
x>q̃
[
Σ̂(β, q)

]−1
xq̃
)
− (#Iq) · log

∣∣Σ̂(β, q)−1
∣∣

end
2 Compute the average CV fit: CV(β) = 1

Q

∑Q
q=1 CV(β, q), ∀β ∈ [β].

3 Select β̂CV = arg minβ∈[β] CV(β).

4 Compute Σ̂ based on the entire data set X using β = β̂CV.
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Oracle/Clairvoyant approach

Given the true scatter matrix Σ0, define

Σα = (1− α)
1

n

n∑

i=1

u(x>i Σ−10 xi)xix
>
i + αI

Choose the oracle α0 as the value that minimize the expected loss, say

αo = αo(Σ0) = arg min
α

E[d(Σα,Σ0)]

for some suitable distance function d(A,B).

Replace the unknown true Σ0 in α0 with some preliminary estimate
or guess Σ̂0

⇒ α̂o = αo(Σ̂0) is the oracle/clairvoyant estimate
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Oracle approach for regularized Tyler’s M-estimator

Σα = (1− α)
p

n

n∑

i=1

xix
>
i

x>i Σ−10 xi
+ αI.

[Ollila and Tyler, 2014]

idea: Given a shape matrix Σ0, verifying Tr(Σ−10 ) = p, choose α so
that Σ−10 Σα is as close as possible to cI, for some c > 0.
A natural distance that measures similarity in shape:

d(Σ0,Σα) = ‖Σ−10 Σα − 1
pTr(Σ−10 Σα)I‖2

The obtained oracle estimator is (in real-valued case):

αo =
p− 2 + pTr(Σ0)

p− 2 + pTr(Σ0) + n(p+ 2){p−1Tr(Σ−20 )− 1}
Estimate α̂o = αo(Σ̂0) is obtained by using Σ̂0 that is

• Tyler’s M -estimator normalized s.t. Tr(Σ̂
−1
0 ) = p when n ≥ p

• regularized Tyler’s estimator using β < n/p & α = 1− β when
n < p
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Oracle approach for DL-FP estimator

Σα = (1− α)
p

n

n∑

i=1

xix
>
i

x>i Σ−10 xi
+ αI.

[Chen et al., 2011] proposed an oracle estimator for the tuning parameter
of DL-FP estimator defined in this slide

Given a shape matrix Σ0, verifying Tr(Σ0) = p, find α as

αo = arg min
α

E[‖Σ0 −Σα‖2]

The obtained oracle estimator is (in the real-valued case):

αo =
p3 + (p− 2)Tr(Σ2

0)

{p3 + (p− 2)Tr(Σ2
0)}+ n(p+ 2)(Tr(Σ2

0)− p)
.

Estimate α̂o = αo(Σ̂0) is obtained using trace normalized sample sign
covariance matrix

Σ̂0 =
p

n

n∑

i=1

xix
>
i

‖xi‖2
.
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I. Ad-hoc shrinkage SCM-s of multiple samples

II. ML- and M -estimators of scatter matrix

III. Geodesic convexity

IV. Regularized M -estimators

V. Penalized estimation of multiple covariances
Pooling vs joint estimation
Regularized discriminant analysis
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http://arxiv.org/abs/1608.08126
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Multiple covariance estimation problem

We are given K groups of elliptically distributed measurements,

x11, . . . ,x1n1 , . . . , xK1, . . . ,xKnK

Each group Xk = {xk1, . . . ,xknk
} containing nk p-dimensional

samples, and

N =

K∑

i=1

nk = total sample size

πk =
nk
N

= relative sample size of the k-th group

Sample populations follow elliptical distributions, Ep(µk,Σk, gk), with
different scatter matrices Σk possessing mutual structure or a joint
center Σ ⇒ need to estimate both {Σk}Kk=1 and Σ.

We assume that symmetry center µk of populations is known or that
data is centered.
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Proposal 1: Regularization towards a pooled center

A pooled M -estimator of scatter is defined as a minimum of

L(Σ) =

K∑

k=1

πkLk(Σ) =
1

N

{
K∑

k=1

nk∑

i=1

ρk(x
>
kiΣ

−1xki)

}
− log |Σ−1|

over Σ ∈ S(p).

Penalized M -estimators of scatter for the individual groups solve

min
Σk∈S(p)

{
βLk(Σk) + (1− β) d(Σk, Σ̂)

}
, k = 1, . . .K,

where

β ∈ (0, 1] is a regularization/penalty parameter
d(A,B) : S(p)× S(p)→ R+

0 is penalty/distance fnc.

Distance d(Σk, Σ̂) enforce similarity of Σk-s to joint center Σ̂ and β
controls the amount of shrinkage towards Σ̂.
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Proposal 2: Joint regularization enforcing similarity
among the group scatter matrices

minimize
{Σk}Kk=1,Σ∈S(p)

K∑

k=1

πk {βLk(Σk) + (1− β) d(Σk,Σ)}

where β is the penalty parameter, d(Σk,Σ) is the distance function as
before, and

Lk(Σk) =
1

nk

nk∑

i=1

ρk(x
>
kiΣ

−1
k xki)− log |Σ−1k |

is the M(L)-cost fnc for the k-th class and ρk(·) is the loss fnc.

‘Center’ Σ can now be viewed as ‘average’ of Σk-s. Namely, for fixed
Σk-s, the minumum Σ̂ is found by solving

Σ̂(π) = arg min
Σ∈S(p)

K∑

i=1

πk d(Σk,Σ),

which represents the weighted mean associated with the distance d.
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Modifications to Proposals 1 and 2

Penalty parameter β can be replaced by individual tuning constants
βk, k = 1, . . . ,K for each class.

Comment: typically one tends to choose small βk when sample size is

small, but this does not seem to be necessary in our framework

In Proposal 1, if the total sample size N is small (e.g., N < p), then
one may add a penalty P(Σ) = Tr(Σ−1) and compute pooled center
Σ̂ as a pooled regularized M -estimator:

min
Σ

K∑

k=1

πkLk(Σ) + γP(Σ)

where γ > 0 is the (additional) penalty parameter for the center.

Such a penalty term can be added to Proposal 2 as well.
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We consider the cases that penalty function d(A,B) is the
KL-distance or ellipticity distance.

Both distances are affine invariant, i.e.

d(A,B) = d(CAC>,CBC>), ∀ nonsingular C.

which is Property D4 in Slide

If D4 holds, the resulting estimators are affine equivariant:

if xki → Cxki for all k = 1, . . . ,K; i = 1, . . . , nk

then {Σ1, . . . ,ΣK ,Σ} → {CΣ1C
>, . . . ,CΣKC>,CΣC>}.
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Critical points/algorithm using KL-divergence
penalty

Problem: min
{Σk}Kk=1,Σ

K∑

k=1

πk
{
βLk(Σk) + (1− β) dKL(Σk,Σ)

}

Solving

0 = β
∂Lk(Σk)

∂Σ−1k
+ (1− β)

∂dKL(Σk,Σ)

∂Σ−1k
, k = 1, . . . ,K

0 =

K∑

k=1

πk
∂dKL(Σk,Σ)

∂Σ

yields estimating equations

Σk= β
1

nk

nk∑

i=1

uk(x
>
kiΣ

−1
k xki)xkix

>
ki + (1− β)Σ

Σ=

(
K∑

k=1

πkΣ
−1
k

)−1

where uk(t) = ρ′k(t), k = 1, . . . ,K.
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Critical points/algorithm using KL-divergence
penalty

Problem: min
{Σk}Kk=1,Σ

K∑

k=1

πk
{
βLk(Σk) + (1− β) dKL(Σk,Σ)

}

Solving

0 = β
∂Lk(Σk)

∂Σ−1k
+ (1− β)

∂dKL(Σk,Σ)

∂Σ−1k
, k = 1, . . . ,K

0 =

K∑

k=1

πk
∂dKL(Σk,Σ)

∂Σ

yields algorithm that updates covariances cyclically from Σ1, . . .ΣK to Σ

Σk←β
1

nk

nk∑

i=1

uk(x
>
kiΣ

−1
k xki)xkix

>
ki + (1− β)Σ

Σ←
(

K∑

k=1

πkΣ
−1
k

)−1

where uk(t) = ρ′k(t), k = 1, . . . ,K.
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Critical points/algorithm using ellipticity distance

As for KL-distance, we can easily solve the estimating equations and
propose a cyclic algorithm to find the solutions.

Estimating equations

Σk= β
1

nk

nk∑

i=1

uk(x
>
kiΣ

−1
k xki)xkix

>
ki + (1− β)

pΣ

Tr(Σ−1k Σ)
,

Σ=

(
K∑

k=1

πk
pΣ−1k

Tr(Σ−1k Σ)

)−1

where uk(t) = ρ′k(t), k = 1, . . . ,K.
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Critical points/algorithm using ellipticity distance

As for KL-distance, we can easily solve the estimating equations and
propose a cyclic algorithm to find the solutions.

Algorithm updates covariances cyclically from Σ1, . . .ΣK to Σ

Σk←β
1

nk

nk∑

i=1

uk(x
>
kiΣ

−1
k xki)xkix

>
ki + (1− β)

pΣ

Tr(Σ−1k Σ)
,

Σ←
(

K∑

k=1

πk
pΣ−1k

Tr(Σ−1k Σ)

)−1

where uk(t) = ρ′k(t), k = 1, . . . ,K.
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Quadratic discriminant analysis (QDA)

QDA assigns x to a group k̂:

k̂ = min
1≤k≤K

{
(x− x̄k)

>S−1k (x− x̄k) + ln |Sk|
}
.

where

Sk =
1

nk

nk∑

i=1

(xki − x̄k)(xki − x̄k)
>

is the SCM of a training data set Xk from kth
population (k = 1, . . . ,K).

Assumptions:

Gaussian populations Np(µk,Σk)

Covariance matrices can be different for each class Σi 6=Σj i 6= j
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Linear discriminant analysis (LDA)

LDA assigns x to a group k̂:

k̂ = min
1≤k≤K

{
(x− x̄k)

>S−1(x− µ̂k)
}
.

where

S =

K∑

k=1

πkSk.

is the pooled SCM estimator.

Assumptions:

Gaussian populations Np(µk,Σk)

Covariance matrices are the same for each class Σi=Σj i 6= j
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Regularized Discriminant Analysis (RDA)

RDA∗ assigns x to a group k̂:

k̂ = min
1≤k≤K

{
(x− µ̂k)

>[Σ̂k(β)]−1(x− µ̂k) + ln |Σ̂k(β)|
}
.

where Σ̂k(β) are the penalized estimators of scatter matrices obtained
either using Proposal 1 or Proposal 2.

Interpretation:

if β → 1, we do not shrink towards joint center
⇒ RDA → QDA

if β → 0, we shrink towards joint center
⇒ RDA → LDA

0 < β < 1 ⇒ a compromise between LDA and QDA.

For robust loss fnc-s, we use spatial median as an estimate µ̂k of location

∗ Inspired by Friedman, ”Regularized discriminant Analysis”, JASA (1989)
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Simulation set-up

We use the same loss function ρ = ρk for each K samples

Training data sets Xk are generated from Np(µk,Σk) or tν(µk,Σk),
ν = 2. These are used to estimate the discriminant rules.

Test data sets of same size N = 100 was generated in exactly the
same manner and classified with the discriminant rules thereby
yielding an estimate of the misclassification risk.

RDA rules are computed over a grid of β ∈ (0, 1) values and optimal
(smallest) misclassification risk is reported.

Prop1(ρ, d) and Prop2(ρ, d) refer to RDA rules based on Proposal 1
and 2 estimators, respectively, where ρ refers to used loss fnc
(Gaussian, Huber’s, Tyler’s) and d to the used distance fnc (KL or
Ellipticity).
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Unequal spherical covariance matrices (Σk = kI)
Nr of classes is K = 3, total sample size N =

∑K
k=1 nk = 100.

(n1, n2, n3) ∼ Multin(N ; p1 = p2 = 1
4 , p3 = 1

2).

µ1 = 0 and remaining classes µk have norm equal to
δk = ‖µk‖ = 3 + k in orthogonal directions

Gaussian case: test misclassification errors %
method p = 10 p = 20 p = 30
Oracle1 8.8(2.6) 6.2(2.3) 4.6(1.9)

Oracle2 9.8(3.1) 7.6(2.6) 6.0(2.3)

QDA 19.9(4.4) − −
LDA 17.1(3.8) 20.5(4.3) 24.0(4.9)

Prop1(G,KL) 12.2(3.1) 14.6(3.5) 17.9(4.3)

Prop1(H,KL) 12.4(3.2) 14.6(3.5) 17.7(4.1)

Prop1(T,E) 10.9(3.1) 12.1(3.3) 16.5(3.9)

Prop2(G,E) 10.5(3.0) 11.5(3.3) 15.9(3.8)

Prop2(T,E) 10.9(3.1) 12.1(3.3) 16.5(3.9)

Prop2(H,E) 10.5(3.0) 11.6(3.3) 15.7(3.8)

Prop2(H,KL) 12.3(3.2) 14.8(3.6) 18.0(4.1)

standard deviations inside parantheses in subscript

Oracle1 = QDA rule
using true µk and Σk.

Oracle2 = QDA rule
using true Σk, but
estimated µ̂k.

= sample means
in Gaussian case

= spatial median
in t2 case
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Unequal spherical covariance matrices (Σk = kI)

Nr of classes is K = 3, total sample size N =
∑K

k=1 nk = 100.

(n1, n2, n3) ∼ Multin(N ; p1 = p2 = 1
4 , p3 = 1

2).

µ1 = 0 and remaining classes µk have norm equal to
δk = ‖µk‖ = 4 + k in orthogonal directions

Gaussian case: test misclassification errors %
Oracle1 15.7(3.8) 18.2(3.9) 21.1(4.0)

Oracle2 16.2(3.5) 19.1(4.2) 21.9(4.1)

QDA 26.9(5.2) − −
LDA 21.8(4.9) 25.3(5.3) 27.7(5.3)

Prop1(G,KL) 19.7(4.8) 22.7(5.2) 24.7(5.1)

Prop1(H,KL) 15.5(3.7) 17.9(4.0) 20.3(4.1)

Prop1(T,E) 16.8(4.0) 20.4(4.3) 23.4(4.7)

Prop2(G,E) 22.3(5.9) 24.3(5.1) 25.9(4.8)

Prop2(T,E) 16.8(4.0) 20.4(4.4) 23.5(4.8)

Prop2(H,E) 16.6(3.9) 20.2(4.4) 23.6(4.6)

Prop2(H,KL) 15.5(3.7) 17.9(4.0) 20.5(4.1)

standard deviations inside parantheses in subscript

Oracle1 = QDA rule
using true µk and Σk.

Oracle2 = QDA rule
using true Σk, but
estimated µ̂k.

= sample means
in Gaussian case

= spatial median
in t2 case
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Comments

I do not want to bug you with more simulations...

I just mention that, we can perform much better than estimators
regularized sample covariance matrices (SCM-s) Sk(β) with shrinkage
towards pooled SCM S (as in Friedman’s RDA) even when the
clusters follow Gaussian distributions.

Why?

We use more natural Riemannian geometry and our class of joint
regularized estimators is huge:

X many different g-convex penalty fnc’s d(A,B): Kullback-Leibler ,
Ellipticity, Riemannian distance, . . .

X many different g-convex loss fnc’s ρ(t): Gaussian, Tyler’s, Huber’s,
. . ..

X robust: good performance under non-Gaussianity or outliers
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Thank you !!!

References: see the next slides
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