Robust Covariance Matrix Estimators for Sparse Data Using Regularization and RMT

Esa Ollila ${ }^{1} \quad$ Frédéric Pascal ${ }^{2}$
${ }^{1}$ Aalto University, Department of Signal Processing and Acoustics, Finland esa.ollila@aalto.fi http://signal.hut.fi/~esollila/
${ }^{2}$ CentraleSupelec, Laboratory of Signals and Systems (L2S), France frederic.pascal@centralesupelec.fr http://fredericpascal.blogspot.fr

EUSIPCO'16, Sep 29, 2016

Aalto University

CentraleSupélec

Contents

Part A

Regularized M-estimators of covariance:
■ M-estimation and geodesic (g-)convexity

- Regularization via g-convex penalties
- Application: regularized discriminant analysis

Part B

Frederic
Regularized M-estimators and RMT
■ Robust estimation and RMT
■ Regularized M-estimators

- Application(s): DoA estimation, target detection

Covariance estimation problem

■ $\mathrm{x}: p$-variate (centered) random vector
$■ \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ i.i.d. realizations of \mathbf{x}

- Problem: Find an estimate $\hat{\boldsymbol{\Sigma}}=\hat{\boldsymbol{\Sigma}}\left(\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}\right)$ of the positive definite covariance matrix

$$
\boldsymbol{\Sigma}=\mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top}\right] \in \mathcal{S}(p)
$$

■ Solution: Maximum likelihood, M-estimation.
Conventional estimate: the sample covariance matrix (SCM)

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}
$$

Why covariance estimation?

PCA

Discriminant Analysis

Graphical models

Covariance estimation challenges

1 Insufficient sample support (ISS) case: $p>n$. \Longrightarrow Estimate of $\boldsymbol{\Sigma}^{-1}$ can not be computed!
2 Low sample support (LSS) (i.e., p of the same magnitude as n) $\Longrightarrow \hat{\boldsymbol{\Sigma}}$ is estimated with a lot of error.
3 Outliers or heavy-tailed non-Gaussian data $\Longrightarrow \hat{\boldsymbol{\Sigma}}$ is completely corrupted.

Problem 1 \& $2=$ Sparse data
\Rightarrow regularization and/or RMT

Problem 3
\Rightarrow robust estimation

Why robustness?

1 Outliers difficult to glean from high-dimensional data sets
2 Impulsive measurement environments in sensing systems (e.g., fMRI)
3 SCM is vulnerable to outliers and inefficient under non-Gaussianity
4 Most robust estimators can not be computed in $p>n$ cases

Part A : Contents

I. Ad-hoc shrinkage SCM-s of multiple samples
II. ML- and M-estimators of scatter matrix
III. Geodesic convexity

- Geodesic
- g-convex functions
IV. Regularized M-estimators

■ Shrinkage towards an identity matrix

- Shrinkage towards a target matrix
- Estimation of the regularization parameter
V. Penalized estimation of multiple covariances
- Pooling vs joint estimation
- Regularized discriminant analysis

Acknowledgement

- To my co-authors:

David E. Tyler
Rutgers University

Ami Wiesel
Hebrew U. Jerusalem

Ilya Soloveychik Hebrew U. Jerusalem

- and many inspiring people working in this field:

Frederic Pascal, Teng Zhang, Lutz Dümbgen, Romain Couillet, Matthew R. McKay, Yuri Abramovich, Olivier Besson, Maria Greco, Fulvio Gini, Daniel Palomar,
I. Ad-hoc shrinkage SCM-s of multiple samples
II. ML- and M-estimators of scatter matrix
III. Geodesic convexity
IV. Regularized M-estimators
V. Penalized estimation of multiple covariances

Multiple covariance estimation problem

■ We are given K groups of elliptically distributed measurements,

$$
\mathbf{x}_{11}, \ldots, \mathbf{x}_{1 n_{1}}, \quad \ldots, \quad \mathbf{x}_{K 1}, \ldots, \mathbf{x}_{K n_{K}}
$$

■ Each group $\mathbf{X}_{k}=\left\{\mathbf{x}_{k 1}, \ldots, \mathbf{x}_{k n_{k}}\right\}$ containing $n_{k} p$-dimensional samples, and

$$
\begin{aligned}
N & =\sum_{i=1}^{K} n_{k}=\text { total sample size } \\
\pi_{k} & =\frac{n_{k}}{N}=\text { relative sample size of the } k \text {-th group }
\end{aligned}
$$

■ Sample populations follow elliptical distributions, $\mathcal{E}_{p}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, g_{k}\right)$, with different scatter matrices $\boldsymbol{\Sigma}_{k}$ possessing mutual structure or a joint center $\boldsymbol{\Sigma} \Rightarrow$ need to estimate both $\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$ and $\boldsymbol{\Sigma}$.

- We assume that symmetry center $\boldsymbol{\mu}_{k}$ of populations is known or that data is centered.

Ad-hoc regularization approach

■ Gaussian MLE-s of $\boldsymbol{\Sigma}_{1}, \ldots, \boldsymbol{\Sigma}_{K}$ are the SCM-s $\mathbf{S}_{1}, \ldots, \mathbf{S}_{K}$
■ If n_{k} small relative to p, common assumption is $\boldsymbol{\Sigma}_{1}=\ldots=\boldsymbol{\Sigma}_{K}$ which is estimated by pooled SCM

$$
\mathbf{S}=\sum_{k=1}^{K} \pi_{k} \mathbf{S}_{k}
$$

■ Rather than assume the population covariance matrices are all equal (hard modeling), simply shrink them towards equality (soft modeling):

$$
\mathbf{S}_{k}(\beta)=\beta \mathbf{S}_{k}+(1-\beta) \mathbf{S}
$$

e.g., as in [Friedman, 1989], where $\beta \in(0,1)$ is a regularization parameter, commonly chosen by cross-validation.

- If the the total sample size N is also small relative to dimension p, then Friedman recommends also shrinking the pooled SCM \mathbf{S} towards $\propto \mathbf{I}$.

Regularized covariance matrices

Q1 Can the Ad-Hoc method be improved or some theory/formalism put behind it?
Q2 Robustness and resistance, e.g., non-Gaussian models and outliers.
Q3 Methods other then convex combinations?
Q4 Shrinkage towards other models?

- E.g., proportional covariance matrices instead of common covariance matrices?
- Other types of shrinkage to the structure?

Q1: Some formalism to the Ad-Hoc method

- Gaussian ML cost function ($-2 \times$ neg. log-likelihood) for the k th class:

$$
\mathcal{L}_{\mathrm{G}, k}\left(\boldsymbol{\Sigma}_{k}\right)=\operatorname{Tr}\left(\boldsymbol{\Sigma}_{k}^{-1} \mathbf{S}_{k}\right)-\log \left|\boldsymbol{\Sigma}_{k}^{-1}\right|
$$

has a unique minimizer at $\hat{\boldsymbol{\Sigma}}_{k}=\mathbf{S}_{k}$ ($=$ SCM of the k th sample).
■ Penalized objective function: Add a penalty term and solve

$$
\min _{\boldsymbol{\Sigma}_{k} \in \mathcal{S}(p)}\left\{\mathcal{L}_{\mathrm{G}, k}\left(\boldsymbol{\Sigma}_{k}\right)+\lambda d\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)\right\}, \quad k=1, \ldots K
$$

where

- $\lambda>0$ is penalty/regularization parameter
- $d(\mathbf{A}, \mathbf{B}): \mathcal{S}(p) \times \mathcal{S}(p) \rightarrow \mathbb{R}_{0}^{+}$is penalty/distance function minimized whenever $\mathbf{A}=\mathbf{B}$
Idea: Penalty shrinks $\hat{\boldsymbol{\Sigma}}_{k}$ towards (fixed) shrinkage target matrix $\hat{\boldsymbol{\Sigma}} \in \mathcal{S}(p)$, the amount of shrinkage depends on magnitude of λ

Q1: Some formalism to the Ad-Hoc method

- The information theoretic Kullback-Leibler (KL) divergence [Cover and Thomas, 2012], distance from $\mathcal{N}_{p}(\mathbf{0}, \mathbf{A})$ to $\mathcal{N}_{p}(\mathbf{0}, \mathbf{B})$ is

$$
d_{\mathrm{KL}}(\mathbf{A}, \mathbf{B})=\operatorname{Tr}\left(\mathbf{A}^{-1} \mathbf{B}\right)-\log \left|\mathbf{A}^{-1} \mathbf{B}\right|-p
$$

As is well known, it verifies $d_{\mathrm{KL}}(\mathbf{A}, \mathbf{B}) \geq 0$ and $=0$ for $\mathbf{A}=\mathbf{B}$.

- Using $d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)$ as the penalty, the optimization problem $\mathcal{L}_{\mathrm{G}, k}\left(\boldsymbol{\Sigma}_{k}\right)+\lambda d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)$ possesses a unique solution given by

$$
\mathbf{S}_{k}(\beta)=\beta \mathbf{S}_{k}+(1-\beta) \hat{\boldsymbol{\Sigma}}, \quad k=1, \ldots, K
$$

where $\beta=(1+\lambda)^{-1} \in(0,1)$ and $k=1, \ldots, K$.

Q1: Some formalism to the Ad-Hoc method

- The information theoretic Kullback-Leibler (KL) divergence [Cover and Thomas, 2012], distance from $\mathcal{N}_{p}(\mathbf{0}, \mathbf{A})$ to $\mathcal{N}_{p}(\mathbf{0}, \mathbf{B})$ is

$$
d_{\mathrm{KL}}(\mathbf{A}, \mathbf{B})=\operatorname{Tr}\left(\mathbf{A}^{-1} \mathbf{B}\right)-\log \left|\mathbf{A}^{-1} \mathbf{B}\right|-p,
$$

As is well known, it verifies $d_{\mathrm{KL}}(\mathbf{A}, \mathbf{B}) \geq 0$ and $=0$ for $\mathbf{A}=\mathbf{B}$.

- Using $d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)$ as the penalty, the optimization problem $\mathcal{L}_{\mathrm{G}, k}\left(\boldsymbol{\Sigma}_{k}\right)+\lambda d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)$ possesses a unique solution given by

$$
\mathbf{S}_{k}(\beta)=\beta \mathbf{S}_{k}+(1-\beta) \mathbf{S}, \quad k=1, \ldots, K
$$

where $\beta=(1+\lambda)^{-1} \in(0,1)$ and $k=1, \ldots, K$.
■ This gives Friedman's Ad-Hoc shrinkage SCM estimators when the shrinkage target matrix $\hat{\boldsymbol{\Sigma}}$ is the pooled SCM S

Discussion

Note: The Gaussian likelihood $\mathcal{L}_{\mathrm{G}, k}\left(\boldsymbol{\Sigma}_{k}\right)$ is convex in $\boldsymbol{\Sigma}_{k}^{-1}$ and so is $d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)$.

Comments

■ Other (non-Gaussian) ML cost functions $\mathcal{L}_{k}(\boldsymbol{\Sigma})$ are commonly not convex in $\boldsymbol{\Sigma}^{-1}$

- Swapping the order $d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)$ to $d_{\mathrm{KL}}\left(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma}_{k}\right)$ gives a distance function that is non-convex in $\boldsymbol{\Sigma}_{k}^{-1}$.

Problems

- The penalized optimization program, $\mathcal{L}_{\mathrm{G}, k}\left(\boldsymbol{\Sigma}_{k}\right)+\lambda d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)$, does not seem to generalize to using other distance functions or other non-Gaussian cost functions.
- KL-distance $d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)$ is not so useful when the assumption is $\boldsymbol{\Sigma}_{k} \propto \boldsymbol{\Sigma}$, i.e., proportional covariance matrices.

How about a robust Ad-hoc method?

- Plug-In Robust Estimators: Let $\hat{\boldsymbol{\Sigma}}_{k}$ and $\hat{\boldsymbol{\Sigma}}$ represent robust estimates of scatter (covariance) matrix for the k th class and the pooled data respectively.
- Then a robust version of Friedman's approach is given by

$$
\hat{\boldsymbol{\Sigma}}_{k}(\beta)=\beta \hat{\boldsymbol{\Sigma}}_{k}+(1-\beta) \hat{\boldsymbol{\Sigma}}, \quad k=1, \ldots, K
$$

where $\beta \in(0,1)$.
■ Problems: This approach fails since many robust estimators of scatter, e.g. $M, S, M M, M C D$, etc., are not defined or do not vary much from the sample covariance when the data is sparse.

Our approach in Part A of the tutorial

■ Regularization via jointly g-convex distance functions
■ Robust M-estimation (robust loss fnc downweights outliers)
I. Ad-hoc shrinkage SCM-s of multiple samples
II. ML- and M-estimators of scatter matrix
III. Geodesic convexity
IV. Regularized M-estimators
V. Penalized estimation of multiple covariances

References

R R. A. Maronna (1976).
Robust M-estimators of multivariate location and scatter.
Ann. Stat., 5(1):51-67.
庫 D. E. Tyler (1987).
A distribution-free M -estimator of multivariate scatter.
Ann. Stat., 15(1):234-251.
嗇 E. Ollila D. E. Tyler V. Koivunen, and H. V. Poor (2012).
Complex elliptically symmetric distributions: survey, new results and applications.
IEEE Trans. Signal Processing, 60(11):5597-5625.

Elliptically symmetric (CES) distribution

$$
\mathbf{x} \sim \mathcal{E}_{p}(\mathbf{0}, \boldsymbol{\Sigma}, g): \text { p.d.f. is }
$$

$$
f(\mathbf{x}) \propto|\boldsymbol{\Sigma}|^{-1 / 2} g\left(\mathbf{x}^{\top} \mathbf{\Sigma}^{-1} \mathbf{x}\right)
$$

■ $\boldsymbol{\Sigma} \in \mathcal{S}(p)$, unknown positive definite $p \times p$ scatter matrix parameter.

- $g: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}^{+}$, fixed density generator.

When the covariance matrix exists: $\mathbb{E}\left[\mathbf{x x}^{\top}\right]=\boldsymbol{\Sigma}$.
Example: Normal distribution $N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ has p.d.f.

$$
f(\mathbf{x})=\pi^{-p / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right)
$$

Elliptical distribution with $g(t)=\exp (-t / 2)$.

The maximum likelihood estimator (MLE)

- $\left\{\mathbf{x}_{i}\right\} \stackrel{i i d}{\sim} \mathcal{E}_{p}(\mathbf{0}, \boldsymbol{\Sigma}, g)$, where $n>p$.
- The MLE $\hat{\boldsymbol{\Sigma}} \in \mathcal{S}(p)$ minimizes the negative log-likelihood fnc

$$
\mathcal{L}(\boldsymbol{\Sigma})=\frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|
$$

where $\rho(t)=-2 \ln g(t)$ is the loss function.
■ Critical points are solutions to estimating equations

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}
$$

where $u(t)=\rho^{\prime}(t)$ is the weight function.
■ MLE $=$ "an adaptively weighted sample covariance matrix"

M-estimators of scatter matrix

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}
$$

[Maronna, 1976]

- Among the first proposals for robust covariance matrix estimators

Generalizations of ML-estimators:
■ $u(t)=\rho^{\prime}(t)$ non-neg., continuous and non-increasing.
(admits more general ρ fnc's)
■ $\psi(t)=t u(t)$ strictly increasing \Rightarrow unique solution
■ Not too much data lies in some sub-space \Rightarrow solution exists

Huber's M-estimator

- [Maronna, 1976] defined it as an M-estimator with weight fnc

$$
u_{\mathrm{H}}(t ; c)= \begin{cases}1 / b, & \text { for } t \leqslant c^{2} \\ c^{2} /(t b), & \text { for } t>c^{2}\end{cases}
$$

where $c>0$ is a tuning constant, chosen by the user, and b is a scaling factor used to obtain Fisher consistency at $\mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$.
■ It is also an MLE with loss function [Ollila et al., 2016]:

$$
\rho_{\mathrm{H}}(t ; c)= \begin{cases}t / b & \text { for } t \leqslant c^{2} \\ \left(c^{2} / b\right)\left(\log \left(t / c^{2}\right)+1\right) & \text { for } t>c^{2}\end{cases}
$$

Note: a Gaussian distribution in the middle, but have tails that die down at an inverse polynomial rate. Naturally, $u_{\mathrm{H}}(t ; c)=\rho_{\mathrm{H}}^{\prime}(t ; c)$.

Tyler's (1987) M-estimator

■ Distribution-free M-estimator (under elliptical distributions)

- Defined as a solution to

$$
\hat{\boldsymbol{\Sigma}}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}
$$

\Rightarrow so an M-estimator with Tyler's weight fnc $u(t)=\rho^{\prime}(t)=p / t$

- Now it is also known that $\hat{\boldsymbol{\Sigma}} \in \mathcal{S}(p)$ minimizes the cost fnc

$$
\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})=\frac{1}{n} \sum_{i=1}^{n} \underbrace{p \ln \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)}_{\rho(t)=p \ln t}-\ln \left|\boldsymbol{\Sigma}^{-1}\right|
$$

Note: not an MLE for any elliptical density, so $\rho(t) \neq-2 \ln g(t)$!

Tyler's (1987) M-estimator

■ Distribution-free M-estimator (under elliptical distributions)

- Defined as a solution to

$$
\hat{\boldsymbol{\Sigma}}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}
$$

\Rightarrow so an M-estimator with Tyler's weight fnc $u(t)=\rho^{\prime}(t)=p / t$

- Now it is also known that $\hat{\boldsymbol{\Sigma}} \in \mathcal{S}(p)$ minimizes the cost fnc

$$
\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})=\frac{1}{n} \sum_{i=1}^{n} \underbrace{p \ln \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)}_{\rho(t)=p \ln t}-\ln \left|\boldsymbol{\Sigma}^{-1}\right|
$$

Note: not an MLE for any elliptical density, so $\rho(t) \neq-2 \ln g(t)$!
■ Not convex in $\boldsymbol{\Sigma}$! \ldots or in $\boldsymbol{\Sigma}^{-1}$

Tyler's (1987) M-estimator

■ Distribution-free M-estimator (under elliptical distributions)

- Defined as a solution to

$$
\hat{\boldsymbol{\Sigma}}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}
$$

\Rightarrow so an M-estimator with Tyler's weight fnc $u(t)=\rho^{\prime}(t)=p / t$

- Now it is also known that $\hat{\boldsymbol{\Sigma}} \in \mathcal{S}(p)$ minimizes the cost fnc

$$
\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})=\frac{1}{n} \sum_{i=1}^{n} \underbrace{p \ln \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)}_{\rho(t)=p \ln t}-\ln \left|\boldsymbol{\Sigma}^{-1}\right|
$$

Note: not an MLE for any elliptical density, so $\rho(t) \neq-2 \ln g(t)$!
■ Not convex in $\boldsymbol{\Sigma}$! \ldots or in $\boldsymbol{\Sigma}^{-1}$
■ Maronna's/Huber's conditions does not apply.

Tyler's M-estimator, cont'd

$$
\hat{\boldsymbol{\Sigma}}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}
$$

Comments:
1 Limiting case of Huber's M-estimator when $c \rightarrow 0$

Tyler's M-estimator, cont'd

$$
\hat{\boldsymbol{\Sigma}}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}
$$

Comments:
1 Limiting case of Huber's M-estimator when $c \rightarrow 0$
2 Minimum is a unique up to a postive scalar: if $\hat{\boldsymbol{\Sigma}}$ is a minimum then so is $b \hat{\boldsymbol{\Sigma}}$ for any $b>0$

This scaling is utilized in discriminant analysis later on.

Tyler's M-estimator, cont'd

$$
c \hat{\boldsymbol{\Sigma}}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top}(c \hat{\boldsymbol{\Sigma}})^{-1} \mathbf{x}_{i}}
$$

Comments:
1 Limiting case of Huber's M-estimator when $c \rightarrow 0$
2 Minimum is a unique up to a postive scalar: if $\hat{\boldsymbol{\Sigma}}$ is a minimum then so is $b \hat{\boldsymbol{\Sigma}}$ for any $b>0$
$\Rightarrow \hat{\boldsymbol{\Sigma}}$ is a shape matrix estimator. We may choose a solution which verifies $|\hat{\boldsymbol{\Sigma}}|=1$.

Tyler's M-estimator, cont'd

$$
\hat{\boldsymbol{\Sigma}}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}
$$

Comments:
1 Limiting case of Huber's M-estimator when $c \rightarrow 0$
2 Minimum is a unique up to a postive scalar: if $\hat{\boldsymbol{\Sigma}}$ is a minimum then so is $b \hat{\boldsymbol{\Sigma}}$ for any $b>0$
$\Rightarrow \hat{\boldsymbol{\Sigma}}$ is a shape matrix estimator. We may choose a solution which verifies $|\hat{\boldsymbol{\Sigma}}|=1$.
3 A Fisher consistent estimator at $\mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ can be obtained by scaling any minimum $\hat{\boldsymbol{\Sigma}}$ by

$$
b=\operatorname{Median}\left\{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i} ; i=1, \ldots, n\right\} / \operatorname{Median}\left(\chi_{p}^{2}\right)
$$

This scaling is utilized in discriminant analysis later on.

I. Ad-hoc shrinkage SCM-s of multiple samples

II. ML- and M-estimators of scatter matrix
III. Geodesic convexity

■ Geodesic

- g-convex functions
IV. Regularized M-estimators
V. Penalized estimation of multiple covariances

References

E Wiesel, A. (2012a).
Geodesic convexity and covariance estimation.
IEEE Trans. Signal Process., 60(12):6182-6189.
國 Zhang, T., Wiesel, A., and Greco, M. S. (2013).
Multivariate generalized Gaussian distribution: Convexity and graphical models.
IEEE Trans. Signal Process., 61(16):4141-4148.
围 Bhatia, R. (2009).
Positive definite matrices.
Princeton University Press.

From Euclidean convexity to Riemannian convexity

A set S is
\ldots if $\forall \mathbf{x}_{0}, \mathbf{x}_{1} \in S$ and $t \in[0,1]$:

$$
(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1} \in S
$$

From Euclidean convexity to Riemannian convexity

A set S is

\ldots if $\forall \mathbf{x}_{0}, \mathbf{x}_{1} \in S$ and $t \in[0,1]$:

$$
(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1} \in S
$$

From Euclidean convexity to Riemannian convexity

A set S is

\ldots if $\forall \mathbf{x}_{0}, \mathbf{x}_{1} \in S$ and $t \in[0,1]$:

$$
(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1} \in S
$$

\ldots if together with \mathbf{x}_{0} and \mathbf{x}_{1}, it contains the shortest path (goedesic) connecting them
nonconvex

Geodesic convexity in $p=1$ variable

convex function in $x \in \mathbb{R}$:

$$
f(\underbrace{(1-t) x_{0}+t x_{1}}_{\text {line }}) \leq(1-t) f\left(x_{0}\right)+t f\left(x_{1}\right)
$$

g-convex function in $\sigma^{2} \in \mathbb{R}_{0}^{+}$:

$$
\rho(\underbrace{\left(\sigma_{0}^{2}\right)^{(1-t)}\left(\sigma_{1}^{2}\right)^{t}}_{\text {geodesic }}) \leq(1-t) \rho\left(\sigma_{0}^{2}\right)+t \rho\left(\sigma_{1}^{2}\right)
$$

Geodesic convexity in $p=1$ variable

convex function in $x \in \mathbb{R}: f(x)=\rho\left(e^{x}\right), x=\log \left(\sigma^{2}\right)$

$$
f(\underbrace{(1-t) x_{0}+t x_{1}}_{\text {line }}) \leq(1-t) f\left(x_{0}\right)+t f\left(x_{1}\right)
$$

g-convex function in $\sigma^{2} \in \mathbb{R}_{0}^{+}: \rho\left(\sigma^{2}\right)=f\left(\log \sigma^{2}\right), \sigma^{2}=e^{x}$

$$
\rho(\underbrace{\left(\sigma_{0}^{2}\right)^{(1-t)}\left(\sigma_{1}^{2}\right)^{t}}_{\text {geodesic }}) \leq(1-t) \rho\left(\sigma_{0}^{2}\right)+t \rho\left(\sigma_{1}^{2}\right)
$$

■ Convex in $x=\log \sigma^{2}$ w.r.t. $(1-t) x_{0}+t x_{1}$ is equivalent to g-convex in σ^{2} w.r.t. $\sigma_{t}^{2}=\left(\sigma_{0}^{2}\right)^{(1-t)}\left(\sigma_{1}^{2}\right)^{t}$.

Geodesic convexity in $p=1$ variable

convex function in $x \in \mathbb{R}$:

$$
f(\underbrace{(1-t) x_{0}+t x_{1}}_{\text {line }}) \leq(1-t) f\left(x_{0}\right)+t f\left(x_{1}\right)
$$

g-convex function in $\sigma^{2} \in \mathbb{R}_{0}^{+}$:

$$
\rho(\underbrace{\left(\sigma_{0}^{2}\right)^{(1-t)}\left(\sigma_{1}^{2}\right)^{t}}_{\text {geodesic }}) \leq(1-t) \rho\left(\sigma_{0}^{2}\right)+t \rho\left(\sigma_{1}^{2}\right)
$$

■ Convex in $x=\log \sigma^{2}$ w.r.t. $(1-t) x_{0}+t x_{1}$ is equivalent to g-convex in σ^{2} w.r.t. $\sigma_{t}^{2}=\left(\sigma_{0}^{2}\right)^{(1-t)}\left(\sigma_{1}^{2}\right)^{t}$.

- But for $\boldsymbol{\Sigma} \in \mathcal{S}(p), p \neq 1$, the solution is not a simple change of variables.

Geodesic $(g-)$ convexity

On the Riemannian manifold of positive definite matrices, the
geodesic (shortest) path from $\Sigma_{0} \in \mathcal{S}(p)$ to $\Sigma_{1} \in \mathcal{S}(p)$ is

$$
\boldsymbol{\Sigma}_{t}=\boldsymbol{\Sigma}_{0}^{1 / 2}\left(\boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{\Sigma}_{1} \boldsymbol{\Sigma}_{0}^{-1 / 2}\right)^{t} \boldsymbol{\Sigma}_{0}^{1 / 2} \text { for } t \in[0,1]
$$

where $\boldsymbol{\Sigma}_{t} \in \mathcal{S}(p)$ for $0 \leq t \leq 1 \Rightarrow \mathcal{S}(p)$ forms a g-convex set ($=$ all geodesic paths $\boldsymbol{\Sigma}_{t}$ lie in $\left.\mathcal{S}(p)\right)$.

■ Main idea: change the parametric path going from $\boldsymbol{\Sigma}_{0}$ to $\boldsymbol{\Sigma}_{1}$.

- Midpoint of the path, $\boldsymbol{\Sigma}_{1 / 2}:=$ Riemannian (geometric) mean between $\boldsymbol{\Sigma}_{0}$ and $\boldsymbol{\Sigma}_{1}$.
- For $p=1$, the path is $\sigma_{t}^{2}=\left(\sigma_{0}^{2}\right)^{1-t}\left(\sigma_{1}^{2}\right)^{t}$ and the midpoint is the geometric mean

$$
\sigma_{1 / 2}^{2}=\sqrt{\sigma_{0}^{2} \sigma_{1}^{2}}=\exp \left\{\frac{1}{2}\left[\ln \left(\sigma_{0}^{2}\right)+\ln \left(\sigma_{1}^{2}\right)\right]\right\}
$$

Riemannian manifold

■ Geodesics: informally, shortest paths on a manifold (surface)
■ Space of symmetric matrices equipped with inner product

$$
\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{Tr}(\mathbf{A B})=\operatorname{vec}(\mathbf{A})^{\top} \operatorname{vec}(\mathbf{B})
$$

and associated Frobenius norm $\|\cdot\|_{F}=\sqrt{\langle\cdot, \cdot\rangle}$ is a Euclidean space of dimension $p(p+1) / 2$.

- Instead, view covariance matrices as elements of a Riemannian manifold
■ Endow $\mathcal{S}(p)$ with the Riemannian metric
- local inner product $\langle\mathbf{A}, \mathbf{B}\rangle_{\boldsymbol{\Sigma}}$ on the tangent space of symmetric matrices

$$
\begin{aligned}
\langle\mathbf{A}, \mathbf{B}\rangle_{\boldsymbol{\Sigma}} & =\left\langle\boldsymbol{\Sigma}^{-1 / 2} \mathbf{A} \boldsymbol{\Sigma}^{-1 / 2}, \boldsymbol{\Sigma}^{-1 / 2} \mathbf{B} \boldsymbol{\Sigma}^{-1 / 2}\right\rangle \\
& =\operatorname{Tr}\left(\mathbf{A} \boldsymbol{\Sigma}^{-1} \mathbf{B} \boldsymbol{\Sigma}^{-1}\right)=\operatorname{vec}(\mathbf{A})^{\top}\left(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{\Sigma}^{-1}\right) \operatorname{vec}(\mathbf{B})
\end{aligned}
$$

■ Geodesic path $\boldsymbol{\Sigma}_{t}$ is the shortest path from $\boldsymbol{\Sigma}_{0}$ to $\boldsymbol{\Sigma}_{1}$.

Geodesically (g-)convex function

A function $h: \mathcal{S}(p) \rightarrow \mathbb{R}$ is g-convex function if

$$
h\left(\boldsymbol{\Sigma}_{t}\right) \leq(1-t) h\left(\boldsymbol{\Sigma}_{0}\right)+t h\left(\boldsymbol{\Sigma}_{1}\right) \text { for } t \in(0,1) .
$$

If the inequality is strict, then h is strictly g-convex.
Note: Def. of convexity of $h(\boldsymbol{\Sigma})$ remains the same, i.e., w.r.t. to given path $\boldsymbol{\Sigma}_{t}$. Now geodesic instead of Euclidean path.

$$
g \text {-convexity }=\text { convexity w.r.t. geodesic paths }
$$

Local is Global

1 any local minimum of $h(\boldsymbol{\Sigma})$ over $\mathcal{S}(p)$ is a global minimum.
2 If h is strictly g-convex and a minimum is in $\mathcal{S}(p)$, then it is a unique minimum.
$3 g$-convex $+g$-convex $=g$-convex

Useful results on g-convexity: my personal top 3

$$
\boldsymbol{\Sigma}_{t}=\boldsymbol{\Sigma}_{0}^{1 / 2}\left(\boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{\Sigma}_{1} \boldsymbol{\Sigma}_{0}^{-1 / 2}\right)^{t} \boldsymbol{\Sigma}_{0}^{1 / 2}
$$

1. Joint diagonalization formulation

The geodesic path can be written equivalently as

$$
\boldsymbol{\Sigma}_{t}=\mathbf{E D}^{t} \mathbf{E}^{\top}, \quad t \in[0,1]
$$

where $\boldsymbol{\Sigma}_{0}=\mathbf{E E}^{\top}$ and $\boldsymbol{\Sigma}_{1}=\mathbf{E D E}^{\top}$ by joint diagonalization.
■ \mathbf{E} is a nonsingular square matrix: row vectors of \mathbf{E}^{-1} are the eigenvectors of $\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\Sigma}_{1}$
■ \mathbf{D} is a diagonal matrix: diagonal elements are the eigenvalues of

$$
\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\Sigma}_{1} \quad \text { or } \quad \boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{\Sigma}_{1} \boldsymbol{\Sigma}_{0}^{-1 / 2}
$$

Useful results on g-convexity: my personal top 3

$$
\boldsymbol{\Sigma}_{t}=\boldsymbol{\Sigma}_{0}^{1 / 2}\left(\boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{\Sigma}_{1} \boldsymbol{\Sigma}_{0}^{-1 / 2}\right)^{t} \boldsymbol{\Sigma}_{0}^{1 / 2}
$$

2. Convexity w.r.t. t

A continuous function f on a g-convex set \mathcal{M} is g-convex if $f\left(\boldsymbol{\Sigma}_{t}\right)$ is classically convex in $t \in[0,1]$

3. Midpoint convexity

A continuous function on f on a g-convex set \mathcal{M} is g-convex if

$$
f\left(\boldsymbol{\Sigma}_{1 / 2}\right) \leq \frac{1}{2}\left\{f\left(\boldsymbol{\Sigma}_{0}\right)+f\left(\boldsymbol{\Sigma}_{1}\right)\right\}
$$

for any $\boldsymbol{\Sigma}_{0}, \boldsymbol{\Sigma}_{1} \in \mathcal{M}$.
For more results, see [Wiesel and Zhang, 2015]

Some geodesically (g-)convex functions

1 if $h(\boldsymbol{\Sigma})$ is g-convex in $\boldsymbol{\Sigma}$, then it is g-convex in $\boldsymbol{\Sigma}^{-1}$.
scalar case: if $h(x)$ is convex in $x=\log \left(\sigma^{2}\right) \in \mathbb{R}$, then it is convex in $-x=\log \left(\sigma^{-2}\right)=-\log \left(\sigma^{2}\right)$.
$2 \pm \log |\boldsymbol{\Sigma}|$ is g-convex. (i.e., log-determinant is g-linear function)
scalar case: the scalar g-linear function is the logarithm.
$3 \mathbf{a}^{\top} \boldsymbol{\Sigma}^{ \pm 1} \mathbf{a}$ is strictly g-convex $(\mathbf{a} \neq 0)$.
$4 \log \left|\sum_{i=1}^{n} \mathbf{H}_{i} \boldsymbol{\Sigma}^{ \pm 1} \mathbf{H}_{i}\right|$ is g-convex.
scalar case: log-sum-exp function is convex.
5 if $f(\boldsymbol{\Sigma})$ is g-convex, then $f\left(\boldsymbol{\Sigma}_{1} \otimes \boldsymbol{\Sigma}_{2}\right)$ is jointly g-convex.

Example: Tyler's M-estimator of shape

Let's minimize Tyler's cost function $\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})=\mathcal{L}_{\mathrm{T}}\left(\sigma_{2}^{2}, \sigma_{12}\right)$ over g-convex set of 2×2 shape matrices:

$$
\begin{aligned}
\mathcal{M}(2) & =\{\boldsymbol{\Sigma} \in \mathcal{S}(2): \operatorname{det}(\boldsymbol{\Sigma})=1\} \\
& =\left\{\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right): \sigma_{2}^{2}>0, \sigma_{12} \in \mathbb{R}, \sigma_{1}^{2}=\frac{1+\sigma_{12}^{2}}{\sigma_{2}^{2}}\right\}
\end{aligned}
$$

We generated a Gaussian sample of length $n=15$ with $\sigma_{2}^{2}=\sigma_{12}=1$.

$$
\min _{\boldsymbol{\Sigma} \in \mathcal{M}(2)} \underbrace{\sum_{i=1}^{n} \ln \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)}_{=\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})}
$$

Contours of $\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})$ and the solution $\hat{\boldsymbol{\Sigma}}$.

Example: Tyler's M-estimator of shape

Let's minimize Tyler's cost function $\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})=\mathcal{L}_{\mathrm{T}}\left(\sigma_{2}^{2}, \sigma_{12}\right)$ over g-convex set of 2×2 shape matrices:

$$
\begin{aligned}
\mathcal{M}(2) & =\{\boldsymbol{\Sigma} \in \mathcal{S}(2): \operatorname{det}(\boldsymbol{\Sigma})=1\} \\
& =\left\{\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right): \sigma_{2}^{2}>0, \sigma_{12} \in \mathbb{R}, \sigma_{1}^{2}=\frac{1+\sigma_{12}^{2}}{\sigma_{2}^{2}}\right\}
\end{aligned}
$$

We generated a Gaussian sample of length $n=15$ with $\sigma_{2}^{2}=\sigma_{12}=1$.

$$
\min _{\boldsymbol{\Sigma} \in \mathcal{M}(2)} \underbrace{\sum_{i=1}^{n} \ln \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)}_{=\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})}
$$

Consider two points $\boldsymbol{\Sigma}_{0}$ and $\boldsymbol{\Sigma}_{1}$ of \mathcal{M}.

Example: Tyler's M-estimator of shape

Let's minimize Tyler's cost function $\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})=\mathcal{L}_{\mathrm{T}}\left(\sigma_{2}^{2}, \sigma_{12}\right)$ over g-convex set of 2×2 shape matrices:

$$
\begin{aligned}
\mathcal{M}(2) & =\{\boldsymbol{\Sigma} \in \mathcal{S}(2): \operatorname{det}(\boldsymbol{\Sigma})=1\} \\
& =\left\{\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right): \sigma_{2}^{2}>0, \sigma_{12} \in \mathbb{R}, \sigma_{1}^{2}=\frac{1+\sigma_{12}^{2}}{\sigma_{2}^{2}}\right\}
\end{aligned}
$$

We generated a Gaussian sample of length $n=15$ with $\sigma_{2}^{2}=\sigma_{12}=1$.

$$
\min _{\boldsymbol{\Sigma} \in \mathcal{M}(2)} \underbrace{\sum_{i=1}^{n} \ln \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)}_{=\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})}
$$

Their geodesic path
$\boldsymbol{\Sigma}_{t}$ and midpoint $\boldsymbol{\Sigma}_{1 / 2}$

Example: Tyler's M-estimator of shape

Let's minimize Tyler's cost function $\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})=\mathcal{L}_{\mathrm{T}}\left(\sigma_{2}^{2}, \sigma_{12}\right)$ over g-convex set of 2×2 shape matrices:

$$
\begin{aligned}
\mathcal{M}(2) & =\{\boldsymbol{\Sigma} \in \mathcal{S}(2): \operatorname{det}(\boldsymbol{\Sigma})=1\} \\
& =\left\{\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right): \sigma_{2}^{2}>0, \sigma_{12} \in \mathbb{R}, \sigma_{1}^{2}=\frac{1+\sigma_{12}^{2}}{\sigma_{2}^{2}}\right\}
\end{aligned}
$$

We generated a Gaussian sample of length $n=15$ with $\sigma_{2}^{2}=\sigma_{12}=1$.

$$
\min _{\boldsymbol{\Sigma} \in \mathcal{M}(2)} \underbrace{\sum_{i=1}^{n} \ln \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)}_{=\mathcal{L}_{\mathrm{T}}(\boldsymbol{\Sigma})}
$$

By utilizing the proper (Riemannian) metric, Tyler's cost fnc is convex.

Examples of g-convex sets

g-convex set $\mathcal{M}=$ all geodescic paths $\boldsymbol{\Sigma}_{t}$ lie in the set, where

$$
\boldsymbol{\Sigma}_{t}=\boldsymbol{\Sigma}_{0}^{1 / 2}\left(\boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{\Sigma}_{1} \boldsymbol{\Sigma}_{0}^{-1 / 2}\right)^{t} \boldsymbol{\Sigma}_{0}^{1 / 2} \text { for } t \in[0,1]
$$

and $\boldsymbol{\Sigma}_{0}$ and $\boldsymbol{\Sigma}_{1}$ are in \mathcal{M}.
1 The set of PDS matrices: $\mathcal{M}=\mathcal{S}_{p}$
2 The set of PDS shape matrices: $\mathcal{M}=\left\{\boldsymbol{\Sigma} \in \mathcal{S}_{p}: \operatorname{det}(\boldsymbol{\Sigma})=1\right\}$
3 The set of PDS block diagonal matrices.
4 Kronenecker model $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{1} \otimes \boldsymbol{\Sigma}_{2}$
5 Complex circular symmetric model:

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \boldsymbol{\Sigma}_{2} \\
-\boldsymbol{\Sigma}_{2} & \boldsymbol{\Sigma}_{1}
\end{array}\right)
$$

6 PDS circulant matrices, e.g., $[\boldsymbol{\Sigma}]_{i j}=\rho^{|i-j|}, \rho \in(0,1)$.
I. Ad-hoc shrinkage SCM-s of multiple samples
II. ML- and M-estimators of scatter matrix
III. Geodesic convexity
IV. Regularized M-estimators

■ Shrinkage towards an identity matrix
■ Shrinkage towards a target matrix
■ Estimation of the regularization parameter

References

© Ollila, E. and Tyler, D. E. (2014).
Regularized M-estimators of scatter matrix. IEEE Trans. Signal Process., 62(22):6059-6070.

Ollila, E., Soloveychik, I., Tyler, D. E. and Wiesel, A. (2016).
Simultaneous penalized M-estimation of covariance matrices using geodesically convex optimization
Journal of Multivariate Analysis (under review), Cite as:
arXiv:1608.08126 [stat.ME]
http://arxiv.org/abs/1608.08126

Regularized M-estimators of scatter matrix: shrinkage towards identity

Penalized cost function:

$$
\mathcal{L}_{\alpha}(\boldsymbol{\Sigma})=\frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \mathcal{P}(\boldsymbol{\Sigma})
$$

where $\alpha \geq 0$ is a fixed regularization parameter.
Q: Existence, Uniqueness, computation?
Our penalty function pulls Σ away from singularity

$$
\mathcal{P}(\boldsymbol{\Sigma})=\operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)
$$

Condition 1. [Zhang et al., 2013, Ollila and Tyler, 2014]

- $\rho(t)$ is nondecreasing and continuous for $0<t<\infty$.

■ $\rho(t)$ is g-convex (i.e., $\rho\left(e^{x}\right)$ is convex in $-\infty<x<\infty$)
Note: Tyler's, Huber's, Gaussian loss fnc $\rho(t)$ satisfies Cond. 1.

Main results

$$
\mathcal{L}_{\alpha}(\boldsymbol{\Sigma})=\frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right), \alpha>0
$$

Result 1 [Ollila and Tyler, 2014]

Assume $\rho(t)$ satisfies Condition 1.
(a) Uniqueness: $\mathcal{L}_{\alpha}(\boldsymbol{\Sigma})$ is strictly g-convex in $\boldsymbol{\Sigma} \in \mathcal{S}(p)$
(b) Existence: If $\rho(t)$ is bounded below, then the solution to $\mathcal{L}_{\alpha}(\boldsymbol{\Sigma})$ allways exists and is unique.
(c) Furthermore, if $\rho(t)$ is also differentiable, then the minimum corresponds to the unique solution of the regularized M-estimating equation:

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+\alpha \mathbf{I}
$$

Main results (cont'd)

Result 1 implies

- $u(t)$ need not be nonincreasing

■ Unlike the non-regularized case, no conditions on the data are needed! \rightarrow breakdown point is $=1$.

Result 1(d) [Ollila and Tyler, 2014, Theorem 2]

Suppose $\rho(t)$ is continuously differentiable, satisfies Condition 1 and that $u(t)=\rho^{\prime}(t)$ is non-increasing, Then the Fixed-point (FP) algorithm

$$
\hat{\boldsymbol{\Sigma}}_{k+1}=\frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}_{k}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+\alpha \mathbf{I}
$$

converges to the solution of regularized M-estimating equation given in Result 1(c).

Tuning the $\rho(t)$ function

■ Result 1 is general and allows us to tune the $\rho(t)$ function
■ For a given ρ-function, a class of tuned ρ-functions are defined as

$$
\rho_{\beta}(t)=\beta \rho(t) \quad \text { for } \beta>0 \text {. }
$$

where β represents additional tuning constant which can be used to tune the estimator towards some desirable property.
$■$ Using $\rho_{\beta}(t)=\beta \rho(t)$, our optimization program is

$$
\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\beta \frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)
$$

- The solution verifies

$$
\hat{\boldsymbol{\Sigma}}=\beta \frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+\alpha \mathbf{I}
$$

Tuning the $\rho(t)$ function

■ Result 1 is general and allows us to tune the $\rho(t)$ function
■ For a given ρ-function, a class of tuned ρ-functions are defined as

$$
\rho_{\beta}(t)=\beta \rho(t) \quad \text { for } \beta>0 \text {. }
$$

where β represents additional tuning constant which can be used to tune the estimator towards some desirable property.
$■$ Using $\rho_{\beta}(t)=\beta \rho(t)$, our optimization program is

$$
\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\beta \frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)
$$

- The solution verifies

$$
\hat{\boldsymbol{\Sigma}}=\beta \frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+\alpha \mathbf{I}
$$

- Special cases: $\alpha=1-\beta$ or $\beta=(1-\alpha)$.

A class of regularized SCM's

■ Let use tuned Gaussian cost fnc $\rho(t)=\beta t$, where $\beta>0$ is a fixed tuning parameter.

- The penalized cost fnc is then

$$
\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\operatorname{Tr}\left\{(\beta \mathbf{S}+\alpha \mathbf{I}) \boldsymbol{\Sigma}^{-1}\right\}-\ln \left|\boldsymbol{\Sigma}^{-1}\right|
$$

where \mathbf{S} denotes the SCM.

- Due to Result 1, its unique minimizer $\hat{\boldsymbol{\Sigma}}$ is

$$
\hat{\boldsymbol{\Sigma}}_{\alpha, \beta}=\beta \mathbf{S}+\alpha \mathbf{I}
$$

which corresponds to [Ledoit and Wolf, 2004] shrinkage estimator.

- Note: Ledoit-Wolf did not show that $\hat{\boldsymbol{\Sigma}}_{\alpha, \beta}$ solves an penalized Gaussian optimization program.

A class of regularized Tyler's M-estimators

■ Let use tuned Tyler's cost fnc $\rho(t)=p \beta \log t$ for fixed $0<\beta<1$.

- The penalized Tyler's cost fnc is

$$
\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\frac{\beta}{n} \sum_{i=1}^{n} \log \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)
$$

■ The weight fnc is $u(t)=p \beta / t$, so the regularized M-estimating eq. is

$$
\hat{\boldsymbol{\Sigma}}=\beta \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}+\alpha \mathbf{I}
$$

A class of regularized Tyler's M-estimators

■ Let use tuned Tyler's cost fnc $\rho(t)=p \beta \log t$ for fixed $0<\beta<1$.

- The penalized Tyler's cost fnc is

$$
\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\frac{\beta}{n} \sum_{i=1}^{n} \log \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)
$$

■ The weight fnc is $u(t)=p \beta / t$, so the regularized M-estimating eq. is

$$
\hat{\boldsymbol{\Sigma}}=\beta \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}+(1-\beta) \mathbf{I}
$$

■ We commonly use $\alpha=1-\beta$.

A class of regularized Tyler's M-estimators

■ Let use tuned Tyler's cost fnc $\rho(t)=p \beta \log t$ for fixed $0<\beta<1$.

- The penalized Tyler's cost fnc is

$$
\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\frac{\beta}{n} \sum_{i=1}^{n} \log \left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)
$$

■ The weight fnc is $u(t)=p \beta / t$, so the regularized M-estimating eq. is

$$
\hat{\boldsymbol{\Sigma}}=\beta \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}+(1-\beta) \mathbf{I}
$$

■ We commonly use $\alpha=1-\beta$.

- Target $\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})$ is g-convex in $\boldsymbol{\Sigma}$, but ρ is not bounded below \Rightarrow Result $1(\mathrm{~b})$, for existence does not hold.

■ Conditions for existence needs to be considered separately for Tyler's M-estimator;

- (Sufficient) Condition A. For any subspace \mathcal{V} of \mathbb{R}^{p}, $1 \leq \operatorname{dim}(\mathcal{V})<p$, the inequality

$$
\frac{\#\left\{\mathbf{x}_{i} \in \mathcal{V}\right\}}{n}<\frac{\operatorname{dim}(\mathcal{V})}{p \beta}
$$

holds. [(Necessary) Condition B: As earlier but with inequality.]
■ Cond \mathbf{A} implies $\beta<n / p$ whenever the sample is in "general position" (e.g., when sampling from a continuous distribution)

Result 2 [Ollila and Tyler, 2014]

Consider tuned Tyler's cost $\rho_{\beta}(t)=p \beta \ln t$ and $\alpha>0,0 \leq \beta<1$. If Condition A holds, then $\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})$ has a unique minimum $\hat{\boldsymbol{\Sigma}}$ in $\mathcal{S}(p)$, the minimum being obtained at the unique solution to

$$
\hat{\boldsymbol{\Sigma}}=\beta \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}}+\alpha \mathbf{I}
$$

Similar result was found independently in [Pascal et al., 2014, Sun et al., 2014].

■ For fixed $0<\beta<1$, consider two different values α_{1} and α_{2}, and let $\hat{\boldsymbol{\Sigma}}_{1}$ and $\hat{\boldsymbol{\Sigma}}_{2}$ represent the respective regularized Tyler's M-estimators.

- It then follows that

$$
\hat{\boldsymbol{\Sigma}}_{1}=\frac{\alpha_{1}}{\alpha_{2}} \cdot \hat{\boldsymbol{\Sigma}}_{2}
$$

\Rightarrow for any fixed $0<\beta<1$, the regularized Tyler's M-estimators are proportional to one another as α varies.

- Consequently, when the main interest is on estimation of the covariance matrix up to a scale, one may set w.lo.g.

$$
\alpha=1-\beta \quad[\text { or equivalently } \beta=1-\alpha \quad \text {]. }
$$

In these cases, it holds that $\operatorname{Tr}\left(\hat{\boldsymbol{\Sigma}}^{-1}\right)=p$.

Related approach for regularizing Tyler's M-estimator

■ A related regularized M-Tyler's estimator was proposed by [Abramovich and Spencer, 2007] as the limit of the algorithm

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{k+1} \leftarrow(1-\alpha) \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \mathbf{V}_{k}^{-1} \mathbf{x}_{i}}+\alpha \mathbf{I} \\
& \mathbf{V}_{k+1} \leftarrow p \boldsymbol{\Sigma}_{k+1} / \operatorname{Tr}\left(\boldsymbol{\Sigma}_{k+1}\right)
\end{aligned}
$$

where $\alpha \in(0,1]$ is a fixed regularization parameter.

- [Chen et al., 2011] proved that the recursive algorithm above converges to a unique solution regardless of the initialization. [Convergence means convergence in \mathbf{V}_{k} and not necessarily in $\boldsymbol{\Sigma}_{k}$.]
■ Note 1: essentially a diagonally loaded version of the fixed-point (FP) algorithm for Tyler's M-estimator. Hence we call th estimator as DL-FP estimator.
■ Note 2: DL-FP was not shown to be a solution to any penalized form of Tyler's cost function.

Shrinkage towards a target matrix

■ Fixed shrinkage target matrix $\mathbf{T} \in \mathcal{S}(p)$
■ Define penalized M-estimator of scatter matrix as solution to

$$
\min _{\boldsymbol{\Sigma} \in \mathcal{S}(p)}\{\mathcal{L}(\boldsymbol{\Sigma})+\lambda d(\boldsymbol{\Sigma}, \mathbf{T})\}
$$

or equivalently,

$$
\min _{\boldsymbol{\Sigma} \in \mathcal{S}(p)}\{\beta \mathcal{L}(\boldsymbol{\Sigma})+(1-\beta) d(\boldsymbol{\Sigma}, \mathbf{T})\}, \quad \text { where } \lambda=\frac{1-\beta}{\beta}
$$

where

- $\lambda>0$ or $\beta \in(0,1]$ is a regularization/penalty parameter
- $d(\mathbf{A}, \mathbf{B}): \mathcal{S}(p) \times \mathcal{S}(p) \rightarrow \mathbb{R}_{0}^{+}$is penalty/distance fnc.

Distance $d(\boldsymbol{\Sigma}, \mathbf{T})$ is used to enforce similarity of $\boldsymbol{\Sigma}$ to target \mathbf{T} and β controls the amount of shrinkage of solution $\hat{\boldsymbol{\Sigma}}$ towards \mathbf{T}.

Properties of the penalty (distance) function

D1 $d(\mathbf{A}, \mathbf{B})=0$ if $\mathbf{A}=\mathbf{B}$,
D2 $d(\mathbf{A}, \mathbf{B})$ is jointly g-convex
D3 symmetry: $d(\mathbf{A}, \mathbf{B})=d(\mathbf{B}, \mathbf{A})$.
D4 affine invariance $d(\mathbf{A}, \mathbf{B})=d\left(\mathbf{C A C}^{\top}, \mathbf{C B C}^{\top}\right), \forall$ nonsingular \mathbf{C}
D5 scale invariance: $d\left(c_{1} \mathbf{A}, c_{2} \mathbf{B}\right)=d(\mathbf{A}, \mathbf{B})$ for $c_{1}, c_{2}>0$,
Comments:

- D3-D5 are considered optional properties
- Property D5 is needed for shape matrix estimators (e.g. Tyler's). It is also important if $\boldsymbol{\Sigma}_{k}$-s share a common shape matrix only.
Note: Each distance $d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)$ induce a notion of mean (or center).

Properties of the penalty (distance) function

D1 $d(\mathbf{A}, \mathbf{B})=0$ if $\mathbf{A}=\mathbf{B}$,
D2 $d(\mathbf{A}, \mathbf{B})$ is jointly g-convex
D3 symmetry: $d(\mathbf{A}, \mathbf{B})=d(\mathbf{B}, \mathbf{A})$.
D4 affine invariance $d(\mathbf{A}, \mathbf{B})=d\left(\mathbf{C A C}^{\top}, \mathbf{C B C}^{\top}\right), \forall$ nonsingular \mathbf{C}
D5 scale invariance: $d\left(c_{1} \mathbf{A}, c_{2} \mathbf{B}\right)=d(\mathbf{A}, \mathbf{B})$ for $c_{1}, c_{2}>0$,
Comments:
■ D3-D5 are considered optional properties

- Property D5 is needed for shape matrix estimators (e.g. Tyler's). It is also important if $\boldsymbol{\Sigma}_{k}$-s share a common shape matrix only.
Note: Each distance $d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)$ induce a notion of mean (or center).
\Rightarrow one might expect that a judicious choice of $d(\cdot, \cdot)$ should induce a natural notion of the mean of pos. def. matrices.

The induced mean or center

- Let $\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$ be given matrices in $\mathcal{S}(p)$
- Let weights $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right), \sum_{k=1}^{K} \pi_{k}=1$, be given.

Then

$$
\boldsymbol{\Sigma}(\boldsymbol{\pi})=\underset{\boldsymbol{\Sigma} \in \mathcal{S}(p)}{\arg \min } \sum_{i=1}^{K} \pi_{k} d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)
$$

is a weighted mean associated with distance (penalty) d.
■ Q: What is a natural mean of positive definite matrices.

The induced mean or center

- Let $\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$ be given matrices in $\mathcal{S}(p)$
- Let weights $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right), \sum_{k=1}^{K} \pi_{k}=1$, be given.

Then

$$
\boldsymbol{\Sigma}(\boldsymbol{\pi})=\underset{\boldsymbol{\Sigma} \in \mathcal{S}(p)}{\arg \min } \sum_{i=1}^{K} \pi_{k} d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)
$$

is a weighted mean associated with distance (penalty) d.

- Q: What is a natural mean of positive definite matrices.

■ If $p=1$, so we have $\sigma_{1}^{2}, \ldots, \sigma_{K}^{2}>0$, we could consider arithmetic mean $\sigma^{2}=\frac{1}{K} \sum_{k=1}^{K} \sigma_{k}^{2}$.

The induced mean or center

- Let $\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$ be given matrices in $\mathcal{S}(p)$
- Let weights $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right), \sum_{k=1}^{K} \pi_{k}=1$, be given.

Then

$$
\boldsymbol{\Sigma}(\boldsymbol{\pi})=\underset{\boldsymbol{\Sigma} \in \mathcal{S}(p)}{\arg \min } \sum_{i=1}^{K} \pi_{k} d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)
$$

is a weighted mean associated with distance (penalty) d.
■ Q: What is a natural mean of positive definite matrices.
■ If $p=1$, so we have $\sigma_{1}^{2}, \ldots, \sigma_{K}^{2}>0$, we could consider arithmetic mean $\sigma^{2}=\frac{1}{K} \sum_{k=1}^{K} \sigma_{k}^{2}$.
geometric mean $\sigma^{2}=\left(\sigma_{1}^{2} \cdots \sigma_{K}^{2}\right)^{1 / K}$

The induced mean or center

- Let $\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$ be given matrices in $\mathcal{S}(p)$
- Let weights $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right), \sum_{k=1}^{K} \pi_{k}=1$, be given.

Then

$$
\boldsymbol{\Sigma}(\boldsymbol{\pi})=\underset{\boldsymbol{\Sigma} \in \mathcal{S}(p)}{\arg \min } \sum_{i=1}^{K} \pi_{k} d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)
$$

is a weighted mean associated with distance (penalty) d.
■ Q: What is a natural mean of positive definite matrices.
■ If $p=1$, so we have $\sigma_{1}^{2}, \ldots, \sigma_{K}^{2}>0$, we could consider arithmetic mean $\sigma^{2}=\frac{1}{K} \sum_{k=1}^{K} \sigma_{k}^{2}$.
geometric mean $\sigma^{2}=\left(\sigma_{1}^{2} \cdots \sigma_{K}^{2}\right)^{1 / K}$
harmonic mean $\sigma^{2}=\left(\frac{1}{K} \sum_{k=1}^{K}\left(\sigma_{k}^{2}\right)^{-1}\right)^{-1}$

The induced mean or center

- Let $\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$ be given matrices in $\mathcal{S}(p)$
- Let weights $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right), \sum_{k=1}^{K} \pi_{k}=1$, be given.

Then

$$
\boldsymbol{\Sigma}(\boldsymbol{\pi})=\underset{\boldsymbol{\Sigma} \in \mathcal{S}(p)}{\arg \min } \sum_{i=1}^{K} \pi_{k} d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)
$$

is a weighted mean associated with distance (penalty) d.

- Q: What is a natural mean of positive definite matrices.

■ If $p=1$, so we have $\sigma_{1}^{2}, \ldots, \sigma_{K}^{2}>0$, we could consider arithmetic mean $\sigma^{2}=\frac{1}{K} \sum_{k=1}^{K} \sigma_{k}^{2}$.
geometric mean $\sigma^{2}=\left(\sigma_{1}^{2} \cdots \sigma_{K}^{2}\right)^{1 / K}$
harmonic mean $\sigma^{2}=\left(\frac{1}{K} \sum_{k=1}^{K}\left(\sigma_{k}^{2}\right)^{-1}\right)^{-1}$
■ Note: For a pair $\sigma_{0}^{2}, \sigma_{1}^{2}$, the geometric mean is the midpoint of the geodesic $\sigma_{t}^{2}=\left(\sigma_{0}^{2}\right)^{1-t}\left(\sigma_{1}^{2}\right)^{t}$.

So for $p>1$ what penalties could one use?

- Frobenius distance

$$
d_{\mathrm{F}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)=\left\{\operatorname{Tr}\left[\left(\boldsymbol{\Sigma}_{k}-\boldsymbol{\Sigma}\right)^{2}\right]\right\}^{1 / 2}
$$

gives the standard weighted arithmetic mean $\boldsymbol{\Sigma}_{\mathrm{F}}(\boldsymbol{\pi})=\sum_{k=1}^{K} \pi_{k} \boldsymbol{\Sigma}_{k}$.

Riemannian distance $d_{\mathrm{R}}(\mathbf{A}, \mathbf{B})$
Kullback-Leibler (KL) divergence $a<\mathrm{L}$ (A, B)
Ellipticity distance $d_{\mathrm{E}}(\mathbf{A}, \mathbf{B})$
Note: there are also some other distances that are jointly g-convex, and hence fit our framework, e.g., S-divergence of [Sra, 2011].

So for $p>1$ what penalties could one use?

x Frobenius distance

$$
d_{\mathrm{F}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)=\left\{\operatorname{Tr}\left[\left(\boldsymbol{\Sigma}_{k}-\boldsymbol{\Sigma}\right)^{2}\right]\right\}^{1 / 2}
$$

gives the standard weighted arithmetic mean $\boldsymbol{\Sigma}_{\mathrm{F}}(\boldsymbol{\pi})=\sum_{k=1}^{K} \pi_{k} \boldsymbol{\Sigma}_{k}$.
... but not g-convex!

So for $p>1$ what penalties could one use?

x Frobenius distance

$$
d_{\mathrm{F}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)=\left\{\operatorname{Tr}\left[\left(\boldsymbol{\Sigma}_{k}-\boldsymbol{\Sigma}\right)^{2}\right]\right\}^{1 / 2}
$$

gives the standard weighted arithmetic mean $\boldsymbol{\Sigma}_{\mathrm{F}}(\boldsymbol{\pi})=\sum_{k=1}^{K} \pi_{k} \boldsymbol{\Sigma}_{k}$.
... but not g-convex!
\checkmark Riemannian distance $d_{\mathrm{R}}(\mathbf{A}, \mathbf{B})$
\checkmark Kullback-Leibler (KL) divergence $d_{\mathrm{KL}}(\mathbf{A}, \mathbf{B})$
Ellipticity distance $d_{\mathrm{E}}(\mathbf{A}, \mathbf{B})$
Note: there are also some other distances that are jointly g-convex, and hence fit our framework, e.g., S-divergence of [Sra, 2011].

Riemannian distance

■ Riemannian distance

$$
d_{\mathrm{R}}(\mathbf{A}, \mathbf{B})=\left\|\log \left(\mathbf{A}^{-1 / 2} \mathbf{B} \mathbf{A}^{-1 / 2}\right)\right\|_{\mathrm{F}}^{2},
$$

is the length of the geodesic curve between \mathbf{A} and \mathbf{B}.

- The induced mean, called the Riemannian (or Karcher) mean is a unique solution to [Bhatia, 2009]

$$
\sum_{k=1}^{K} \pi_{k} \log \left(\boldsymbol{\Sigma}_{\mathrm{R}}^{1 / 2} \boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\Sigma}_{\mathrm{R}}^{1 / 2}\right)=\mathbf{0}
$$

© No closed-form solution: a number of complex numerical approaches have been proposed in the literature.

Kullback-Leibler (KL) divergence

$$
d_{\mathrm{KL}}(\mathbf{A}, \mathbf{B})=\operatorname{Tr}\left(\mathbf{A}^{-1} \mathbf{B}\right)-\log \left|\mathbf{A}^{-1} \mathbf{B}\right|-p
$$

■ KL-distance verifies $d_{\mathrm{KL}}(\mathbf{A}, \mathbf{B}) \geq 0$ and $=0$ for $\mathbf{A}=\mathbf{B}$.

- utilized as shrinkage penalty in [Sun et al., 2014].

Result 3 [Ollila et al., 2016]

$d_{\mathrm{KL}}(\mathbf{A}, \mathbf{B})$ is jointly strictly g-convex and affine invariant and the mean based on it has a unique solution in closed form:

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\mathrm{I}}(\boldsymbol{\pi}) & =\underset{\boldsymbol{\Sigma} \in \mathcal{S}(p)}{\arg \min } \sum_{i=1}^{K} \pi_{k} d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right) \\
& =\left(\sum_{k=1}^{K} \pi_{k} \boldsymbol{\Sigma}_{k}^{-1}\right)^{-1}
\end{aligned}
$$

which is a weighted harmonic mean of PDS matrices.

Special case: target matrix $\mathrm{T}=\mathrm{I}$

■ If the shrinkage target is $\mathbf{T}=\mathbf{I}$, then the criterion using KL-distance

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{KL}, \beta}(\boldsymbol{\Sigma})=\beta \mathcal{L}(\boldsymbol{\Sigma})+(1-\beta) d_{\mathrm{KL}}(\boldsymbol{\Sigma}, \mathbf{I}) \\
= & \beta\left\{\frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|\right\}+(1-\beta) \underbrace{\left\{\operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|\right\}}_{d_{\mathrm{KL}}(\boldsymbol{\Sigma}, \mathbf{I})}
\end{aligned}
$$

looks closely similar to the optimization program which we studied earlier:

$$
\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\beta \frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)
$$

which utilized the penalty $\mathcal{P}(\boldsymbol{\Sigma})=\operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)$ and a tuned ρ-function $\rho_{\beta}(t)=\beta \rho(t), \beta>0$.

Special case: target matrix $T=I$ (cont'd)

- Note that

$$
\begin{aligned}
& \mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\beta \frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right) \\
& =\beta \underbrace{\left\{\frac{1}{n} \sum_{i=1}^{n} \rho\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)-\ln \left|\boldsymbol{\Sigma}^{-1}\right|\right\}}_{=\mathcal{L}(\boldsymbol{\Sigma})}-(1-\beta) \ln \left|\boldsymbol{\Sigma}^{-1}\right|+\alpha \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)
\end{aligned}
$$

- This shows that $\mathcal{L}_{\alpha, \beta}(\boldsymbol{\Sigma})=\mathcal{L}_{\mathrm{KL}, \beta}(\boldsymbol{\Sigma})$ when $\alpha=1-\beta$
- Thus results given earlier (e.g. Result 1(b)) transfer directly to penalization using KL-penalty.

Ellipticity distance

$$
d_{\mathrm{E}}(\mathbf{A}, \mathbf{B})=p \log \frac{1}{p} \operatorname{Tr}\left(\mathbf{A}^{-1} \mathbf{B}\right)-\log \left|\mathbf{A}^{-1} \mathbf{B}\right|
$$

■ d_{E} is scale invariant. Note: Scale invariance is a useful property for estimators that are scale invariant, e.g., Tyler's M-estimator.

- utilized as shrinkage penalty in [Wiesel, 2012]
- Related to ellipticity factor, $e(\boldsymbol{\Sigma})=\frac{1}{p} \operatorname{Tr}(\boldsymbol{\Sigma}) /|\boldsymbol{\Sigma}|^{1 / p}$, the ratio of the arithmetic and geometric means of the eigenvalues of $\boldsymbol{\Sigma}$.

Result 4 [Ollila et al., 2016]

$d_{\mathrm{E}}(\mathbf{A}, \mathbf{B})$ is jointly g-convex and affine and scale invariant. The induced mean is unique (up to a scale) and solves

$$
\boldsymbol{\Sigma}_{\mathrm{E}}=\left(\sum_{k=1}^{K} \pi_{k} \frac{p \boldsymbol{\Sigma}_{k}^{-1}}{\operatorname{Tr}\left(\boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\Sigma}_{\mathrm{E}}\right)}\right)^{-1}
$$

which is an (implicitly) weighted harmonic mean of normalized $\boldsymbol{\Sigma}_{k}$-s.

Critical points

$$
\min _{\boldsymbol{\Sigma} \in \mathcal{S}(p)}\{\beta \mathcal{L}(\boldsymbol{\Sigma})+(1-\beta) d(\boldsymbol{\Sigma}, \mathbf{T})\}, \quad \beta \in(0,1]
$$

■ Write $\mathcal{P}_{0}(\boldsymbol{\Sigma})=d(\boldsymbol{\Sigma}, \mathbf{T})$ and $\mathcal{P}_{0}^{\prime}(\boldsymbol{\Sigma})=\partial \mathcal{P}(\boldsymbol{\Sigma}) / \partial \boldsymbol{\Sigma}^{-1}$.

- The critical points then verify

$$
\begin{aligned}
\mathbf{0} & =\beta\left\{\frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}-\boldsymbol{\Sigma}\right\}+(1-\beta) \mathcal{P}_{0}^{\prime}(\boldsymbol{\Sigma}) \\
\Leftrightarrow \beta \boldsymbol{\Sigma} & =\beta \frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+(1-\beta) \mathcal{P}_{0}^{\prime}(\boldsymbol{\Sigma}) \\
\Leftrightarrow \boldsymbol{\Sigma} & =\beta \frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+(1-\beta)\left\{\mathcal{P}_{0}^{\prime}(\boldsymbol{\Sigma})+\boldsymbol{\Sigma}\right\} .
\end{aligned}
$$

$■$ For $\mathcal{P}_{0}(\boldsymbol{\Sigma})=d_{\mathrm{KL}}(\boldsymbol{\Sigma}, \mathbf{T})=\operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{T}\right)-\log \left|\boldsymbol{\Sigma}^{-1} \mathbf{T}\right|-p$, this gives

$$
\boldsymbol{\Sigma}=\beta \frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+(1-\beta) \mathbf{T}
$$

Estimation of the regularization parameter

- Let us consider the regularized M-estimator [Ollila and Tyler, 2014] with shrinkage towards an identity matrix:

$$
\hat{\boldsymbol{\Sigma}}=\beta \frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+\alpha \mathbf{I}
$$

■ For simplicity, tune only one parameter and set:

$$
\beta=(1-\alpha), \alpha \in(0,1) \quad \text { or } \quad \alpha=(1-\beta), \beta \in(0,1) .
$$

- Approaches:

1 Cross-validation
2 Oracle/Clairvoyant approach
3 Expected likelihood approach
[Abramovich and Besson, 2013, Besson and Abramovich, 2013]
4 Random matrix theory (more in Frederic's talk after the break).
■ Approaches 2 and 3 are especially useful for Tyler's M-estimator.

Cross-validation (CV)

- Partition $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ into Q separate sets of similar size $I_{1} \cup I_{2} \cup \cdots \cup I_{Q}=\{1, \ldots, n\} \equiv[n]$
- Common choises: $Q=5,10$ or $Q=n$ (leave-one-out $C V$).

■ Taking q th fold out (all $\mathbf{x}_{i}, i \in I_{q}$) gives a reduced data set \mathbf{X}_{-q}.
CV procedure (assuming $\alpha=1-\beta$) proposed in [Ollila et al., 2016]:
1 for $\beta \in[\beta]$ ($=$ a grid of β values in $(0,1)$) and $q \in\{1, \ldots, Q\}$ do

- Compute regularized M-estimator based on \mathbf{X}_{-q}, denoted $\hat{\boldsymbol{\Sigma}}(\beta, q)$
- CV fit for β is computed over the q th folds that were left out:

$$
\mathrm{CV}(\beta, q)=\sum_{\tilde{q} \in I_{q}} \rho\left(\mathbf{x}_{\tilde{q}}^{\top}[\hat{\boldsymbol{\Sigma}}(\beta, q)]^{-1} \mathbf{x}_{\tilde{q}}\right)-\left(\# I_{q}\right) \cdot \log \left|\hat{\boldsymbol{\Sigma}}(\beta, q)^{-1}\right|
$$

end
2 Compute the average CV fit: $\mathrm{CV}(\beta)=\frac{1}{Q} \sum_{q=1}^{Q} \mathrm{CV}(\beta, q), \forall \beta \in[\beta]$.
3 Select $\hat{\beta}_{\mathrm{CV}}=\arg \min _{\beta \in[\beta]} \mathrm{CV}(\beta)$.
4 Compute $\hat{\boldsymbol{\Sigma}}$ based on the entire data set \mathbf{X} using $\beta=\hat{\beta}_{\mathrm{CV}}$.

Oracle/Clairvoyant approach

■ Given the true scatter matrix $\boldsymbol{\Sigma}_{0}$, define

$$
\boldsymbol{\Sigma}_{\alpha}=(1-\alpha) \frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}_{0}^{-1} \mathbf{x}_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}+\alpha \mathbf{I}
$$

■ Choose the oracle α_{0} as the value that minimize the expected loss, say

$$
\alpha_{o}=\alpha_{o}\left(\boldsymbol{\Sigma}_{0}\right)=\arg \min _{\alpha} \mathbb{E}\left[d\left(\boldsymbol{\Sigma}_{\alpha}, \boldsymbol{\Sigma}_{0}\right)\right]
$$

for some suitable distance function $d(\mathbf{A}, \mathbf{B})$.
■ Replace the unknown true $\boldsymbol{\Sigma}_{0}$ in α_{0} with some preliminary estimate or guess $\hat{\boldsymbol{\Sigma}}_{0}$
$\Rightarrow \hat{\alpha}_{o}=\alpha_{o}\left(\hat{\boldsymbol{\Sigma}}_{0}\right)$ is the oracle/clairvoyant estimate

Oracle approach for regularized Tyler's M-estimator

$$
\boldsymbol{\Sigma}_{\alpha}=(1-\alpha) \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}_{0}^{-1} \mathbf{x}_{i}}+\alpha \mathbf{I}
$$

[Ollila and Tyler, 2014]
■ idea: Given a shape matrix $\boldsymbol{\Sigma}_{0}$, verifying $\operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}^{-1}\right)=p$, choose α so that $\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\Sigma}_{\alpha}$ is as close as possible to $c \mathbf{I}$, for some $c>0$.

- A natural distance that measures similarity in shape:

$$
d\left(\boldsymbol{\Sigma}_{0}, \boldsymbol{\Sigma}_{\alpha}\right)=\left\|\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\Sigma}_{\alpha}-\frac{1}{p} \operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\Sigma}_{\alpha}\right) \mathbf{I}\right\|^{2}
$$

- The obtained oracle estimator is (in real-valued case):

$$
\alpha_{o}=\frac{p-2+p \operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}\right)}{p-2+p \operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}\right)+n(p+2)\left\{p^{-1} \operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}^{-2}\right)-1\right\}}
$$

- Estimate $\hat{\alpha}_{o}=\alpha_{o}\left(\hat{\boldsymbol{\Sigma}}_{0}\right)$ is obtained by using $\hat{\boldsymbol{\Sigma}}_{0}$ that is
- Tyler's M-estimator normalized s.t. $\operatorname{Tr}\left(\hat{\boldsymbol{\Sigma}}_{0}^{-1}\right)=p$ when $n \geq p$
- regularized Tyler's estimator using $\beta<n / p \& \alpha=1-\beta$ when $n<p$

Oracle approach for DL-FP estimator

$$
\boldsymbol{\Sigma}_{\alpha}=(1-\alpha) \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\mathbf{x}_{i}^{\top} \boldsymbol{\Sigma}_{0}^{-1} \mathbf{x}_{i}}+\alpha \mathbf{I}
$$

[Chen et al., 2011] proposed an oracle estimator for the tuning parameter of DL-FP estimator ©defined in this slide

■ Given a shape matrix $\boldsymbol{\Sigma}_{0}$, verifying $\operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}\right)=p$, find α as

$$
\alpha_{o}=\arg \min _{\alpha} \mathbb{E}\left[\left\|\boldsymbol{\Sigma}_{0}-\boldsymbol{\Sigma}_{\alpha}\right\|^{2}\right]
$$

- The obtained oracle estimator is (in the real-valued case):

$$
\alpha_{o}=\frac{p^{3}+(p-2) \operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}^{2}\right)}{\left\{p^{3}+(p-2) \operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}^{2}\right)\right\}+n(p+2)\left(\operatorname{Tr}\left(\boldsymbol{\Sigma}_{0}^{2}\right)-p\right)} .
$$

- Estimate $\hat{\alpha}_{o}=\alpha_{o}\left(\hat{\boldsymbol{\Sigma}}_{0}\right)$ is obtained using trace normalized sample sign covariance matrix

$$
\hat{\boldsymbol{\Sigma}}_{0}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\left\|\mathbf{x}_{i}\right\|^{2}}
$$

I. Ad-hoc shrinkage SCM-s of multiple samples

II. ML- and M-estimators of scatter matrix
III. Geodesic convexity
IV. Regularized M-estimators
V. Penalized estimation of multiple covariances

- Pooling vs joint estimation

■ Regularized discriminant analysis

Reference

E- Ollila, E., Soloveychik, I., Tyler, D. E. and Wiesel, A. (2016). Simultaneous penalized M -estimation of covariance matrices using geodesically convex optimization Journal of Multivariate Analysis (under review), Cite as: arXiv:1608.08126 [stat.ME]
http://arxiv.org/abs/1608.08126

Multiple covariance estimation problem

■ We are given K groups of elliptically distributed measurements,

$$
\mathbf{x}_{11}, \ldots, \mathbf{x}_{1 n_{1}}, \quad \ldots, \quad \mathbf{x}_{K 1}, \ldots, \mathbf{x}_{K n_{K}}
$$

- Each group $\mathbf{X}_{k}=\left\{\mathbf{x}_{k 1}, \ldots, \mathbf{x}_{k n_{k}}\right\}$ containing $n_{k} p$-dimensional samples, and

$$
\begin{aligned}
N & =\sum_{i=1}^{K} n_{k}=\text { total sample size } \\
\pi_{k} & =\frac{n_{k}}{N}=\text { relative sample size of the } k \text {-th group }
\end{aligned}
$$

■ Sample populations follow elliptical distributions, $\mathcal{E}_{p}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, g_{k}\right)$, with different scatter matrices $\boldsymbol{\Sigma}_{k}$ possessing mutual structure or a joint center $\boldsymbol{\Sigma} \Rightarrow$ need to estimate both $\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$ and $\boldsymbol{\Sigma}$.

- We assume that symmetry center $\boldsymbol{\mu}_{k}$ of populations is known or that data is centered.

Proposal 1: Regularization towards a pooled center

- A pooled M-estimator of scatter is defined as a minimum of

$$
\mathcal{L}(\boldsymbol{\Sigma})=\sum_{k=1}^{K} \pi_{k} \mathcal{L}_{k}(\boldsymbol{\Sigma})=\frac{1}{N}\left\{\sum_{k=1}^{K} \sum_{i=1}^{n_{k}} \rho_{k}\left(\mathbf{x}_{k i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{k i}\right)\right\}-\log \left|\boldsymbol{\Sigma}^{-1}\right|
$$

over $\boldsymbol{\Sigma} \in \mathcal{S}(p)$.
■ Penalized M-estimators of scatter for the individual groups solve

$$
\min _{\boldsymbol{\Sigma}_{k} \in \mathcal{S}(p)}\left\{\beta \mathcal{L}_{k}\left(\boldsymbol{\Sigma}_{k}\right)+(1-\beta) d\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)\right\}, \quad k=1, \ldots K
$$

where

- $\beta \in(0,1]$ is a regularization/penalty parameter
- $d(\mathbf{A}, \mathbf{B}): \mathcal{S}(p) \times \mathcal{S}(p) \rightarrow \mathbb{R}_{0}^{+}$is penalty/distance fnc.

Distance $d\left(\boldsymbol{\Sigma}_{k}, \hat{\boldsymbol{\Sigma}}\right)$ enforce similarity of $\boldsymbol{\Sigma}_{k}$-s to joint center $\hat{\boldsymbol{\Sigma}}$ and β controls the amount of shrinkage towards $\hat{\boldsymbol{\Sigma}}$.

Proposal 2: Joint regularization enforcing similarity among the group scatter matrices

$$
\underset{\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}, \boldsymbol{\Sigma} \in \mathcal{S}(p)}{\operatorname{minimize}} \sum_{k=1}^{K} \pi_{k}\left\{\beta \mathcal{L}_{k}\left(\boldsymbol{\Sigma}_{k}\right)+(1-\beta) d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)\right\}
$$

where β is the penalty parameter, $d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)$ is the distance function as before, and

$$
\mathcal{L}_{k}\left(\boldsymbol{\Sigma}_{k}\right)=\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \rho_{k}\left(\mathbf{x}_{k i}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x}_{k i}\right)-\log \left|\boldsymbol{\Sigma}_{k}^{-1}\right|
$$

is the $\mathrm{M}(\mathrm{L})$-cost fnc for the k-th class and $\rho_{k}(\cdot)$ is the loss fnc.
'Center' $\boldsymbol{\Sigma}$ can now be viewed as 'average' of $\boldsymbol{\Sigma}_{k}$-s. Namely, for fixed $\boldsymbol{\Sigma}_{k}$-s, the minumum $\hat{\boldsymbol{\Sigma}}$ is found by solving

$$
\hat{\boldsymbol{\Sigma}}(\boldsymbol{\pi})=\underset{\boldsymbol{\Sigma} \in \mathcal{S}(p)}{\arg \min } \sum_{i=1}^{K} \pi_{k} d\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)
$$

which represents the weighted mean associated with the distance d.

Modifications to Proposals 1 and 2

■ Penalty parameter β can be replaced by individual tuning constants $\beta_{k}, k=1, \ldots, K$ for each class.
Comment: typically one tends to choose small β_{k} when sample size is small, but this does not seem to be necessary in our framework
■ In Proposal 1, if the total sample size N is small (e.g., $N<p$), then one may add a penalty $\mathcal{P}(\boldsymbol{\Sigma})=\operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\right)$ and compute pooled center $\hat{\boldsymbol{\Sigma}}$ as a pooled regularized M-estimator:

$$
\min _{\boldsymbol{\Sigma}} \sum_{k=1}^{K} \pi_{k} \mathcal{L}_{k}(\boldsymbol{\Sigma})+\gamma \mathcal{P}(\boldsymbol{\Sigma})
$$

where $\gamma>0$ is the (additional) penalty parameter for the center.
■ Such a penalty term can be added to Proposal 2 as well.

- We consider the cases that penalty function $d(\mathbf{A}, \mathbf{B})$ is the KL-distance or ellipticity distance.
■ Both distances are affine invariant, i.e.

$$
d(\mathbf{A}, \mathbf{B})=d\left(\mathbf{C A C}^{\top}, \mathbf{C B C}^{\top}\right), \forall \text { nonsingular } \mathbf{C} .
$$

which is Property D4 in Slide
■ If D4 holds, the resulting estimators are affine equivariant:

$$
\begin{aligned}
& \text { if } \quad \mathbf{x}_{k i} \rightarrow \mathbf{C x}_{k i} \text { for all } k=1, \ldots, K ; i=1, \ldots, n_{k} \\
& \text { then }\left\{\boldsymbol{\Sigma}_{1}, \ldots, \boldsymbol{\Sigma}_{K}, \boldsymbol{\Sigma}\right\} \rightarrow\left\{\mathbf{C} \boldsymbol{\Sigma}_{1} \mathbf{C}^{\top}, \ldots, \mathbf{C} \boldsymbol{\Sigma}_{K} \mathbf{C}^{\top}, \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\top}\right\}
\end{aligned}
$$

Critical points/algorithm using KL-divergence penalty

Problem:

$$
\min _{\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}, \boldsymbol{\Sigma}} \sum_{k=1}^{K} \pi_{k}\left\{\beta \mathcal{L}_{k}\left(\boldsymbol{\Sigma}_{k}\right)+(1-\beta) d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)\right\}
$$

Solving

$$
\begin{aligned}
& \mathbf{0}=\beta \frac{\partial \mathcal{L}_{k}\left(\boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\Sigma}_{k}^{-1}}+(1-\beta) \frac{\partial d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)}{\partial \boldsymbol{\Sigma}_{k}^{-1}}, \quad k=1, \ldots, K \\
& \mathbf{0}=\sum_{k=1}^{K} \pi_{k} \frac{\partial d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)}{\partial \boldsymbol{\Sigma}}
\end{aligned}
$$

yields estimating equations

$$
\begin{aligned}
\boldsymbol{\Sigma}_{k} & =\beta \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} u_{k}\left(\mathbf{x}_{k i}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x}_{k i}\right) \mathbf{x}_{k i} \mathbf{x}_{k i}^{\top}+(1-\beta) \boldsymbol{\Sigma} \\
\boldsymbol{\Sigma} & =\left(\sum_{k=1}^{K} \pi_{k} \boldsymbol{\Sigma}_{k}^{-1}\right)^{-1}
\end{aligned}
$$

where $u_{k}(t)=\rho_{k}^{\prime}(t), k=1, \ldots, K$.

Critical points/algorithm using KL-divergence penalty

Problem:

$$
\min _{\left\{\boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}, \boldsymbol{\Sigma}} \sum_{k=1}^{K} \pi_{k}\left\{\beta \mathcal{L}_{k}\left(\boldsymbol{\Sigma}_{k}\right)+(1-\beta) d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)\right\}
$$

Solving

$$
\begin{aligned}
& \mathbf{0}=\beta \frac{\partial \mathcal{L}_{k}\left(\boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\Sigma}_{k}^{-1}}+(1-\beta) \frac{\partial d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)}{\partial \boldsymbol{\Sigma}_{k}^{-1}}, \quad k=1, \ldots, K \\
& \mathbf{0}=\sum_{k=1}^{K} \pi_{k} \frac{\partial d_{\mathrm{KL}}\left(\boldsymbol{\Sigma}_{k}, \boldsymbol{\Sigma}\right)}{\partial \boldsymbol{\Sigma}}
\end{aligned}
$$

yields algorithm that updates covariances cyclically from $\boldsymbol{\Sigma}_{1}, \ldots \boldsymbol{\Sigma}_{K}$ to $\boldsymbol{\Sigma}$

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{k} \leftarrow \beta \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} u_{k}\left(\mathbf{x}_{k i}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x}_{k i}\right) \mathbf{x}_{k i} \mathbf{x}_{k i}^{\top}+(1-\beta) \boldsymbol{\Sigma} \\
& \boldsymbol{\Sigma} \leftarrow\left(\sum_{k=1}^{K} \pi_{k} \boldsymbol{\Sigma}_{k}^{-1}\right)^{-1}
\end{aligned}
$$

where $u_{k}(t)=\rho_{k}^{\prime}(t), k=1, \ldots, K$.

Critical points/algorithm using ellipticity distance

As for KL-distance, we can easily solve the estimating equations and propose a cyclic algorithm to find the solutions.

Estimating equations

$$
\begin{aligned}
\boldsymbol{\Sigma}_{k} & =\beta \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} u_{k}\left(\mathbf{x}_{k i}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x}_{k i}\right) \mathbf{x}_{k i} \mathbf{x}_{k i}^{\top}+(1-\beta) \frac{p \boldsymbol{\Sigma}}{\operatorname{Tr}\left(\boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\Sigma}\right)} \\
\boldsymbol{\Sigma} & =\left(\sum_{k=1}^{K} \pi_{k} \frac{p \boldsymbol{\Sigma}_{k}^{-1}}{\operatorname{Tr}\left(\boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\Sigma}\right)}\right)^{-1}
\end{aligned}
$$

where $u_{k}(t)=\rho_{k}^{\prime}(t), k=1, \ldots, K$.

Critical points/algorithm using ellipticity distance

As for KL-distance, we can easily solve the estimating equations and propose a cyclic algorithm to find the solutions.

Algorithm updates covariances cyclically from $\boldsymbol{\Sigma}_{1}, \ldots \boldsymbol{\Sigma}_{K}$ to $\boldsymbol{\Sigma}$

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{k} \leftarrow \beta \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} u_{k}\left(\mathbf{x}_{k i}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x}_{k i}\right) \mathbf{x}_{k i} \mathbf{x}_{k i}^{\top}+(1-\beta) \frac{p \boldsymbol{\Sigma}}{\operatorname{Tr}\left(\boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\Sigma}\right)}, \\
& \boldsymbol{\Sigma} \leftarrow\left(\sum_{k=1}^{K} \pi_{k} \frac{p \boldsymbol{\Sigma}_{k}^{-1}}{\operatorname{Tr}\left(\boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\Sigma}\right)}\right)^{-1}
\end{aligned}
$$

where $u_{k}(t)=\rho_{k}^{\prime}(t), k=1, \ldots, K$.

Quadratic discriminant analysis (QDA)

QDA assigns \mathbf{x} to a group \hat{k} :
$\hat{k}=\min _{1 \leq k \leq K}\left\{\left(\mathbf{x}-\overline{\mathbf{x}}_{k}\right)^{\top} \mathbf{S}_{k}^{-1}\left(\mathbf{x}-\overline{\mathbf{x}}_{k}\right)+\ln \left|\mathbf{S}_{k}\right|\right\}$.
where

$$
\mathbf{S}_{k}=\frac{1}{n_{k}} \sum_{i=1}^{n_{k}}\left(\mathbf{x}_{k i}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{k i}-\overline{\mathbf{x}}_{k}\right)^{\top}
$$

is the SCM of a training data set \mathbf{X}_{k} from k th population $(k=1, \ldots, K)$.

Assumptions:
■ Gaussian populations $\mathcal{N}_{p}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

- Covariance matrices can be different for each class $\boldsymbol{\Sigma}_{i} \neq \boldsymbol{\Sigma}_{j} i \neq j$

Linear discriminant analysis (LDA)

LDA assigns \mathbf{x} to a group \hat{k} :

$$
\hat{k}=\min _{1 \leq k \leq K}\left\{\left(\mathbf{x}-\overline{\mathbf{x}}_{k}\right)^{\top} \mathbf{S}^{-1}\left(\mathbf{x}-\hat{\boldsymbol{\mu}}_{k}\right)\right\} .
$$

where

$$
\mathbf{S}=\sum_{k=1}^{K} \pi_{k} \mathbf{S}_{k}
$$

is the pooled SCM estimator.
Assumptions:
■ Gaussian populations $\mathcal{N}_{p}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

- Covariance matrices are the same for each class $\boldsymbol{\Sigma}_{i}=\boldsymbol{\Sigma}_{j} i \neq j$

Regularized Discriminant Analysis (RDA)

RDA* assigns \mathbf{x} to a group \hat{k} :

$$
\hat{k}=\min _{1 \leq k \leq K}\left\{\left(\mathbf{x}-\hat{\boldsymbol{\mu}}_{k}\right)^{\top}\left[\hat{\boldsymbol{\Sigma}}_{k}(\beta)\right]^{-1}\left(\mathbf{x}-\hat{\boldsymbol{\mu}}_{k}\right)+\ln \left|\hat{\boldsymbol{\Sigma}}_{k}(\beta)\right|\right\} .
$$

where $\hat{\boldsymbol{\Sigma}}_{k}(\beta)$ are the penalized estimators of scatter matrices obtained either using Proposal 1 or Proposal 2.

Interpretation:

■ if $\beta \rightarrow 1$, we do not shrink towards joint center \Rightarrow RDA \rightarrow QDA
■ if $\beta \rightarrow 0$, we shrink towards joint center \Rightarrow RDA \rightarrow LDA
■ $0<\beta<1 \Rightarrow$ a compromise between LDA and QDA.
For robust loss fnc-s, we use spatial median as an estimate $\hat{\boldsymbol{\mu}}_{k}$ of location

* Inspired by Friedman, "Regularized discriminant Analysis", JASA (1989)

Simulation set-up

■ We use the same loss function $\rho=\rho_{k}$ for each K samples

- Training data sets \mathbf{X}_{k} are generated from $\mathcal{N}_{p}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ or $t_{\nu}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$, $\nu=2$. These are used to estimate the discriminant rules.
- Test data sets of same size $N=100$ was generated in exactly the same manner and classified with the discriminant rules thereby yielding an estimate of the misclassification risk.
- RDA rules are computed over a grid of $\beta \in(0,1)$ values and optimal (smallest) misclassification risk is reported.
■ Prop1 (ρ, d) and $\operatorname{Prop} 2(\rho, d)$ refer to RDA rules based on Proposal 1 and 2 estimators, respectively, where ρ refers to used loss fnc (Gaussian, Huber's, Tyler's) and d to the used distance fnc (KL or Ellipticity).

Unequal spherical covariance matrices ($\left.\Sigma_{k}=k \mathbf{I}\right)$

■ Nr of classes is $K=3$, total sample size $N=\sum_{k=1}^{K} n_{k}=100$.
■ $\left(n_{1}, n_{2}, n_{3}\right) \sim \operatorname{Multin}\left(N ; p_{1}=p_{2}=\frac{1}{4}, p_{3}=\frac{1}{2}\right)$.

- $\boldsymbol{\mu}_{1}=\mathbf{0}$ and remaining classes $\boldsymbol{\mu}_{k}$ have norm equal to $\delta_{k}=\left\|\boldsymbol{\mu}_{k}\right\|=3+k$ in orthogonal directions
Gaussian case: test misclassification errors \%

method	$p=10$	$p=20$	$p=30$
Oracle1	$8.8_{(2.6)}$	$6.2_{(2.3)}$	$4.6_{(1.9)}$
Oracle2	$9_{(3.1)}$	$7.6_{(2.6)}$	$6.0_{(2.3)}$
QDA	$19.9_{(4.4)}$	-	-
LDA	$17.1_{(3.8)}$	$20.5_{(4.3)}$	$24.0_{(4.9)}$
Prop1(G,KL)	$12.2_{(3.1)}$	$14.6_{(3.5)}$	$17.9_{(4.3)}$
Prop1(H,KL)	$12.4_{(3.2)}$	$14.6_{(3.5)}$	$17.7_{(4.1)}$
Prop1(T,E)	$10.9_{(3.1)}$	$12.1_{(3.3)}$	$16.5_{(3.9)}$
Prop2(G,E)	$10.5_{(3.0)}$	$11.5_{(3.3)}$	$15.9_{(3.8)}$
Prop2(T,E)	$10.9_{(3.1)}$	$12.1_{(3.3)}$	$16.5_{(3.9)}$
Prop2(H,E)	10.$)_{(3.0)}$	$11.6_{(3.3)}$	$15.7_{(3.8)}$
Prop2(H,KL)	$12.3_{(3.2)}$	$14.8_{(3.6)}$	$18.0_{(4.1)}$

Oracle1 = QDA rule using true $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$.

Oracle2 $=$ QDA rule using true $\boldsymbol{\Sigma}_{k}$, but estimated $\hat{\boldsymbol{\mu}}_{k}$.

■ = sample means in Gaussian case

■ = spatial median in t_{2} case
standard deviations inside parantheses in subscript

Unequal spherical covariance matrices ($\left.\Sigma_{k}=k \mathbf{I}\right)$

- Nr of classes is $K=3$, total sample size $N=\sum_{k=1}^{K} n_{k}=100$.

■ $\left(n_{1}, n_{2}, n_{3}\right) \sim \operatorname{Multin}\left(N ; p_{1}=p_{2}=\frac{1}{4}, p_{3}=\frac{1}{2}\right)$.

- $\boldsymbol{\mu}_{1}=\mathbf{0}$ and remaining classes $\boldsymbol{\mu}_{k}$ have norm equal to $\delta_{k}=\left\|\boldsymbol{\mu}_{k}\right\|=4+k$ in orthogonal directions

Gaussian case: test misclassification errors \%

Oracle1	$15.7_{(3.8)}$	$18.2_{(3.9)}$	$21.1_{(4.0)}$
Oracle2	$16.2_{(3.5)}$	$19.1_{(4.2)}$	$21.9_{(4.1)}$
QDA	$26.9_{(5.2)}$	-	-
LDA	$21.8_{(4.9)}$	$25.3_{(5.3)}$	$27.7_{(5.3)}$
Prop1(G,KL)	$19.7_{(4.8)}$	$22.7_{(5.2)}$	$24.7_{(5.1)}$
Prop1(H,KL)	$15.5_{(3.7)}$	$17.9_{(4.0)}$	$20.3_{(4.1)}$
Prop1(T,E)	$16.8_{(4.0)}$	$20.4_{(4.3)}$	$23.4_{(4.7)}$
Prop2(G,E)	$22.3_{(5.9)}$	$24.3_{(5.1)}$	$25.9_{(4.8)}$
Prop2(T,E)	$16.8_{(4.0)}$	$20.4_{(4.4)}$	$23.5_{(4.8)}$
Prop2(H,E)	$16.6_{(3.9)}$	$202_{(4.4)}$	$23.6_{(4.6)}$
Prop2(H,KL)	$15.5_{(3.7)}$	$17.9_{(4.0)}$	$20.5_{(4.1)}$

Oracle1 = QDA rule using true $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$.

Oracle2 $=$ QDA rule using true $\boldsymbol{\Sigma}_{k}$, but estimated $\hat{\boldsymbol{\mu}}_{k}$.

■ = sample means in Gaussian case

■ = spatial median in t_{2} case
standard deviations inside parantheses in subscript

Comments

■ I do not want to bug you with more simulations...
■ I just mention that, we can perform much better than estimators regularized sample covariance matrices (SCM-s) $\mathbf{S}_{k}(\beta)$ with shrinkage towards pooled SCM S (as in Friedman's RDA) even when the clusters follow Gaussian distributions.

Why?

- We use more natural Riemannian geometry and our class of joint regularized estimators is huge:

Comments

■ I do not want to bug you with more simulations...

- I just mention that, we can perform much better than estimators regularized sample covariance matrices (SCM-s) $\mathbf{S}_{k}(\beta)$ with shrinkage towards pooled SCM S (as in Friedman's RDA) even when the clusters follow Gaussian distributions.

Why?

■ We use more natural Riemannian geometry and our class of joint regularized estimators is huge:
many different g-convex penalty fnc's $d(\mathbf{A}, \mathbf{B})$: Kullback-Leibler , Ellipticity, Riemannian distance, ...
many different g-convex loss fnc's $\rho(t)$: Gaussian, Tyler's, Huber's, robust: good performance under non-Gaussianity or outliers

Thank you !!!

References: see the next slides

Abramovich, Y. and Besson, O. (2013).
Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-part 1: The over-sampled case.

IEEE Trans. Signal Process., 61(23):5807-5818.
(10) Abramovich, Y. I. and Spencer, N. K. (2007).

Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive filtering.
In Proc. Int'I Conf. on Acoustics, Speech and Signal Processing (ICASSP'07), pages 1105-1108.
Besson, O. and Abramovich, Y. (2013).
Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-part 2: The under-sampled case.
IEEE Trans. Signal Process., 61(23):5819-5829.
荀
Bhatia, R. (2009).
Positive definite matrices.
Princeton University Press.
围 Chen, Y., Wiesel, A., and Hero, A. O. (2011).

Robust shrinkage estimation of high-dimensional covariance matrices.
IEEE Trans. Signal Process., 59(9):4097-4107.
Cover, T. M. and Thomas, J. A. (2012).
Elements of information theory.
John Wiley \& Sons.
(1989).

Regularized discriminant analysis.
J. Amer. Stat. Assoc., 84(405):165-175.

目 Ledoit, O. and Wolf, M. (2004).
A well-conditioned estimator for large-dimensional covariance matrices.
J. Mult. Anal., 88:365-411.
(ivaronna, R. A. (1976).
Robust M-estimators of multivariate location and scatter.
Ann. Stat., 5(1):51-67.
(1) Ollila, E., Soloveychik, I., Tyler, D. E., and Wiesel, A. (2016).

Simultaneous penalized M -estimation of covariance matrices using geodesically convex optimization.
Journal of Multivariate Analysis, submitted.

围 Ollila，E．and Tyler，D．E．（2014）．
Regularized M－estimators of scatter matrix．
IEEE Trans．Signal Process．，62（22）：6059－6070．
－Pascal，F．，Chitour，Y．，and Quek，Y．（2014）．
Generalized robust shrinkage estimator and its application to stap detection problem．
IEEE Trans．Signal Process．，62（21）：5640－5651．
回 Sra，S．（2011）．
Positive definite matrices and the S －divergence．
arXiv preprint arXiv：1110．1773．
（1）Sun，Y．，Babu，P．，and Palomar，D．P．（2014）．
Regularized tyler＇s scatter estimator：Existence，uniqueness，and algorithms． IEEE Trans．Signal Process．，62（19）：5143－5156．
國 Wiesel，A．（2012）．
Unified framework to regularized covariance estimation in scaled gaussian models． IEEE Trans．Signal Process．，60（1）：29－38．
Wiesel，A．and Zhang，T．（2015）．
Structured robust covariance estimation．

Foundations and Trends in Signal Processing, 8(3):127-216.
E
Zhang, T., Wiesel, A., and Greco, M. S. (2013).
Multivariate generalized Gaussian distribution: Convexity and graphical models. IEEE Trans. Signal Process., 61(16):4141-4148.

