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I. Introduction
m Motivations
m Results



Motivations ...

Signal Processing applications
m Application reality: only observations = Unknown parameters
m Several SP applications require the covariance matrix estimation, e.g.

sources localization, STAP, Polarimetric SAR classification, radar
detection, MIMO, discriminant analysis, dimension reduction, PCA...

m The ultimate purpose is to characterize the system performance, not
only the estimation performance = ROC curves, PD vs SNR, PFA,
MSE ...
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Motivations ...

Robustness: what happens when models turn to be not Gaussian
anymore?

m Gaussian model = Sample Covariance Matrix
m Outliers and other parasites
m Mismodelling

m Missing data

High dimensional problems
m Massive data
m Data size can be important...
m ... greater than the number of observations
m Link with robustness.

B QUE o et By



Some insights

* Robust Estimation Theory
m More flexible and adjustable models ~~ CES distributions
m Robust family of estimators ~» M -estimators
m Regularized estimators (cf. Part A)

M-estimators statistical properties (complex case)

Statistical properties of M-estimators functionals (e.g. MUSIC
statistic for DoA estimation, ANMF detectors...)

Regularized Tyler Estimator (RTE) derivation and asymptotics
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Some insights

* (Robust) Random Matrix Theory
In many applications, the dimension of the observation m is large (HSI...)

= The required number N of observations for estimation purposes needs
to be larger: N > m BUT this is not the case in practice! Even
N < m is possible

m
~+ New asymptotic regime: N — oo, m — oo and ~ — c € [0,1]

m Extension of “standards” for M-estimators for particular case and for
general CES distribution.

m Asymptotic distribution of the eigenvalues
m Asymptotics for the RTE
m Application to DoA estimation: robust G-MUSIC

Connections between Robust Estimation Theory and RMT
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[l. Estimation, background and applications
m Modeling the background
m Estimating the covariance matrix
m M-estimators asymptotics
m Applications: ANMF and MUSIC



Modeling the background
Complex elliptically symmetric (CES) distributions
Let z be a complex circular random vector of length m. z follows a CES
(CE(p, A, gz)) if its PDF can be written

92(2) = | A" ha((z — W) ATz — ), (1)

where h : [0,00) — [0, 00) is the density generator and is such as (1)
defines a PDF.
m 4 is the statistical mean
m A the scatter matrix
In general (finite second-order moment), M = a A where
m o= —-2¢(0),
m ¢, the characteristic generator is defined through the characteristic
function cxof X by cx(t) = exp(it” u) p(t7 At)
E. Ollila & F. Pascal 10 / 67



Characterizing property

m Unit complex m-sphere:

CS™ £ {zeC™||z| =1}

m u (or u™) = r. v. with uniform distribution on CS™,

u~U(CS™)

Theorem (Stochastic representation theorem)

z ~ CE(p, A, hy) if and only if it admits the stochastic representation
zZ=q 1+ RAu®

where r. va. R > 0, called the modular variate, is independent og u®) and
A = AAH s a factorization of A, where A € C"™** with k = rank(A).

v
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Characterizing property

One-to-one relation with c.d.f Fr(.) of R and characteristic generator

e(.)

Ambiguity: both (R, A) and (¢7'R,cA),c > 0 are valid stochastic
representations of z = constraint for identifiability issues

Distribution of quadratic form: if rank(A) = m, then

Q)2 (z-w"A ™ (z—p) =4 Q

where Q £ R2 is called the 2"%-order modular variate.
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Estimating the covariance matrix
M -estimators

PDF not specified
= MLE can not be derived
= M -estimators are used instead

Let (z1,...,zn) be a N-sample ~ CE(0, A, g5) of length m.

The complex M-estimator of A is defined as the solution of

1 N
:NZ )znzf, (2)

Maronna (1976), Kent and Tyler (1991)
m Existence
m Uniqueness
m Convergence of the recursive algorithm...
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Examples of M-estimators

Huber's estimator Tyler Estimator
SCM: (M -estimator): (Tyler, 1987;
u(r) =1 Kleifr<=e Pascal, 2008):

U(T)Z{K/rifr>e ulr) = 7

u(r)

u(r)

Remarks: Tyler Estimator:

m Huber = mix between SCM and Tyler N "
[ " - m ann
m FP and SCM are‘“not” M-estimators Vy = i Z

. . 2BV 1zl
m Tyler estimator is the most robust. n=1"n TN n

Estimation, background and applications
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Context
M -estimators

Let us set

V =E [u(ZV'z)zZ], (3)

where z ~ CE(0, A, g5).

- (3) admits a unique solution V and V = oA = o/a M where o is
given by Tyler(1982),
- V is a consistent estimate of V.
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Asymptotic distribution of complex )/ -estimators
Theorem 1 (Asymptotic distribution of V)

VN vec(Vy — V) -5 CN (0,2, Q), (4)

where CA is the complex Gaussian distribution, X the CM and € the
pseudo CM:

2 =01 (VI @ V) + govec(V)vec(V)H,

Q=0 (VI @ V) K + oovec(V)vec(V)T,

where K is the commutation matrix.

N

Remark: The SCM is defined as §N = NZZHZTIL{ where z,, are complex

n=1
independent circular zero-mean Gaussian with CM V. Then,
VN vec(Sy — V) -5 CN (0, =i, Q)

Sw=(VI@V)and Qy = (VI @ V)K
E. Ollila & F. Pascal 16 / 67




An important property of complex ) -estimators

Let Vy an estimate of Hermitian positive-definite matrix V that
satisfies
VN (vec(Vy — V) -4 €N (0,2, 9), (5)
with
2 =1 VI ®V + vyvec(V)vec(V)H,
{ Q=11 (VI @ V)K + vovec(V)vec(V)T,

where 11 and v, are any real numbers.

SCM M -estimators Tyler
2 1 o1 (m+1)/m
=& vy 0 o9 —(m+1)/m?
More accurate More robust

Let H(V) be a r-multivariate function on the set of Hermitian
positive-definite matrices, with continuous first partial derivatives and
such as H(V) = H(aV) for all a > 0, e.g. the ANMF statistic, the
MUSIC statistic.
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An important property of complex M-estimators
Theorem 2 (Asymptotic distribution of H(Vy))

VN (H(Vy) — H(V)) -4 CN (0,1, £x, Q1) (6)

where X and Qg are defined as

Sy =uvH (V) (VI V)H' (V)T
Qu =i H'(V)(VI @ V)KH'(V)T,

s [ OH(V)
where H'(V) = <W>

H(SCM) and H(M-estimators) share the same asymptotic distribution
(differs from o)
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Application: Detection using the ANMF test

® In a m-vector y, detecting a complex known signal s = ap
embedded in an additive noise z (with covariance matrix V), can be
written as the following statistical test:

Hypothesis Hy: y =1z Yn=12, n=1,...,N
Hypothesis Hy: y=s+z y,=2z, n=1,....N
where the z,,'s are NV "signal-free” independent observations
(secondary data) used to estimate the noise parameters .
m Let V be an estimate of V.

ANMF test

H~xr—1
‘p VN Y‘2 il A

A(Vy) = — -
(pHVNlp) (yHVle) 1;0

One has A(Vy) = A(a V) for any a > 0.
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Probabilities of false alarm

Pj,-threshold relation in the Gaussian case of A(SCM) (finite N)
Pio=(1=A)*"2F1(a,a = ;b= L), (7)
wherea = N —m+2,b= N +2 and o F} is the Hypergeometric function.

From theorem 2, one has both results
Pyq-threshold relation of A(A-est) for CES distributions

For N large and any elliptically distributed noise, the PFA is still given by
(7) if we replace N by N/uvj.

Py,-threshold relation of A(M-est) for CES distributions

VN (A(V) = A(V)) =5 CN (0,201 A(V) (A(V) - 1)%)
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m Complex Huber's M-estimator.

Simulations

m Figure 1: Gaussian context, here o1 = 1.066.

m Figure 2: K-distributed clutter (shape parameter: 0.1, and 0.01).

-2.6]

-3.4]

logarithm of var(A)

== var(Apr)

—var(Ascx)

+ var(Agw) for 01N data

Thm validation (even for small N)

Estimation, background and applications Applications: ANMF and MUSIC
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Simulations: Probabilities of False Alarm

m Complex Huber's M-estimator.
m Figure 1: Gaussian context, here o1 = 1.066.

m Figure 2: K-distributed clutter (shape parameter: 0.1).

o T T T T T T T o

: : : : "= —so
— Huber . 2 3 i == Hube|
10’} o s

Validation of theorem (even for Interest of the M-estimators
small N) for False Alarm regulation
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MUSIC method for DoA estimation

m K direction of arrival 6;, on m antennas

m Gaussian stationary narrowband signal with DoA 20° with additive
noise.

m the DoA is estimated from NN snapshots, using the SCM and the
Huber's M-estimator.

K
Zt = Z VDS(Ok)ykt + owy
k=1

H(V) =~(0)=s0)"EwE{s(0), (V known)
m—K

H(Vy) =4(0)= > \s(0)7eef's(0) = H(aVy), (V unknown)
=1

where \; (resp. &;) are the eigenvalues (resp.eigenvectors) of V.
The Mean Square Error (MSE) between the estimated angle 6 and the real
angle 6 is then computed (case of one source).
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noise.

Simulation using the MUSIC method

m A m = 3 ULA with half wavelength sensors spacing is used,
m Gaussian stationary narrowband signal with DoA 20° with additive

m the DoA is estimated from IV snapshots, using the SCM, the Huber's
M-estimator and the FP estimator.

10°

1072

T
----SCM
--=--Huber
-==-Tyler

%-- Huber with o1 N data
-+ Tyler with ™1 p data

m

I
100

I I I
200 300 400

number of observations N

(a) White Gaussian additive noise

500

10° |

107! ¢

T
----SCM
----Huber

I I I
100 200 300

number of observations N'

(b) K-distributed additive noise (v = 0.1)

Figure: MSE of 6 vs the number N of observations, with m = 3.
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[1l. Random Matrix Theory
m Interest of RMT: A very simple example
m Classical Results
m Robust RMT
m Applications to DoA estimation



Interest of RMT: A very simple example...
Problem: Estimation of 1 DoA embedded in white Gaussian noise

z; = \/ps(0)y: + wy

where the w;'s are n independent realizations of circular white Gaussian
noise, i.e. w; ~ CN(0,1).

Classical approach

. 1
— H
"SN=R ZH R

m Then, MUSIC algorithm allows to estimate the DoA...

What happens when the dimension m is large?

N
o~ 1
mSy=— wywi — 1
N Ntz:; ttm,n—)oo

m Then, MUSIC algorithm IS NOT the best way to estimate the DoA...
E. Ollila & F. Pascal 25 / 67



Classical approach: N > m
e.g. STAP context, 4 sensors and 64 pulses, m = 256 and N = 10*

0 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Figure: Empirical distribution for the eigenvalues of the SCM in the case of a
white Gaussian noise of dimension m = 256 for N = 10* secondary data
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What happens when the dimension m is large? (compared to N)
STAP context, 4 sensors and 64 pulses, m = 256 and N = 103

Marcenko-Pastur Law...

PDF

0 0.5 1 1.5 2 2.5 3

Figure: Empirical distribution for the eigenvalues of the SCM in the case of a
white Gaussian noise of dimension m = 256 for N = 10 secondary data
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What happens when the dimension m is large? (compared to N)
STAP context, 4 sensors and 64 pulses, m = 256 and N = 500

Marcenko-Pastur Law...

0.8 - -

0.6 -

0 | IIIIIIIII
0.5 1 1.5 2 2.5

0

PDF

3

Figure: Empirical distribution for the eigenvalues of the SCM in the case of a
white Gaussian noise of dimension m = 256 for N = 500 secondary data
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MSE

10

Consequences

Bad assumptions = Bad performance

SNR [dB]

(a) 50 data of size 10

MSE

Classical MUSIC
MUSIC (RMT)

SNR [dB]

(b) 250 data of size 50

25

Figure: MSE on the different DoA estimators for K = 1 source embedded in an
additive white Gaussian noise

Random Matrix Theory

Interest of RMT: A very simple example

E. Ollila & F. Pascal
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RMT - Classical results

Assumptions:

m ~ 1 & i
m N, m — oo and N 7 ¢€ (0,1) and Sy = N;zizi the SCM

m (21,...,z2y) be a N-sample, i.i.d (i.e. E[zl(j) z,(gl)] = 0) with finite
fourth-order moment.

Remark: CES dist. do not respect this assumptions!
Thus one has:

1) FSv = pMP
where F'SN (resp. FMP) stands for the distribution of the

eigenvalues of Sy (resp. the Marcenko-Pastur distribution) and =

stands for the weak convergence.
The MP PDF is defined by

B 1- D10+ f(z) ife>1
“(‘”)_{,(f(x)) o ifze(o,l]

with f(z) = 2:02 o fz)(x —c-)
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RMT - Classical results

Exploiting the MP dist for the SCM eigenvalues leads to a new MUSIC
statistic:

Z Bis(0)e;efs(6) is the G-MUSIC statistic (Mestre, 2008)

where m 3
Hi .
1+ BALNE— i<m—K
Z (/\i i — [ )

Bi = B A S
= <A )\kA —Aﬂk > i>m— K
o\ — A A — g
with A1 < ... < A (resp. €1,...,&n, the eigenvalues (resp. the eigenvectors) of
Sy and f1 < ... < fim the eigenvalues of diag(A \f\[

X:(Xl,...,Am)T.

Remark: Contrary to MUSIC or Robust-MUSIC, all the eigenvectors are
used to compute G-MUSIC.
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Robust RMT
Assumptions: (Couillet, 2014)

m
m N,m — oo and N 7 C€ (0,1) and Vi a M-estimator (with

previous assumptions)

moment

Thus, it is shown that:

1) There exists a unique solution to the M-estimator fixed-point
equation for all large m a.s. The recursive algorithm associated
converges to this solution.

2) l¢71(1) Viy — Sy =2 0 when N, m — oo and LGNy
where ||.|| stands for the spectral norm and ¢ such that ¢(t) = t.u(t).

Remark: This result is similar to those presented in the classical
asymptotic regime (m fixed and N — +00).
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Robust RMT
2) is the key result! Notably, it implies that

Classical results in RMT can be extended to the M -estimators

ZBZ He,6Ms(h) is STILL the G-MUSIC statistic for the

M- estlmators

where m 3 )
1+ Y () i<m-K
B; = em—t41 \ N T Ak A —
S <A )\kA —AﬂkA > ,i>m—K
o\ = A A — g
with A1 < ... < A\, (resp. &i,...,&,, the eigenvalues (resp. the eigenvectors) of
Vi and fiy < ... < [iy the eigenvalues of diag(A \f\f

A= (Al,...,ﬁ\m)T.
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Application to DoA estimation with MUSIC for
different additive clutter

10-7 H

|| ----MUSIC (without RMT)

----Robust MUSIC
—A— G-MUSIC (With RMT)
—&— Robust G-MUSIC

(a) Homogeneous noise (=~

—10 0 10
SNR [dB]

data of size 10

[|----MUSIC (without RMT)
----Robust MUSIC R
|| -~ G-MUSIC (with RMT)
—&— Robust G-MUSIC
T T T Il
-10 0 10 20 30
SNR [dB]

Gaussian), 50 (b) Heterogeneous clutter, 50 data of size

Figure: MSE performance of the various MUSIC estimators for K = 1 source

Random Matrix Theory Applications to DoA estimation
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Resolution probability of 2 sources

I
----MUSIC (without RMT)
----Robust MUSIC /
0.8 _a— G-MUSIC (With RMT) ’

>
= —A— Robust G-MUSIC )
Q2 1
o
_g 0.6 //,// |
o I
5 04f i 8
] Iy
& //
23 I
/0
0.2 |- po .
////
04 domezz"" |
-5 0 5 10 15 20
SNR [dB]

Figure: Resolution performance of the MUSIC estimators in homogeneous clutter

for 50 data of size 10
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Pros and Cons of these results

m Advantages
m Original results on robust RMT
m Now, possibility of using robust estimators in a RMT context:
extension of classical RMT results such DoA estimation (done),
sources power estimation, number of sources estimation
(challenging problem), detection...
m Great improvement: sources resolution, MUSIC statistic est.
m Limitations
m Assumption of independence, i.e. not CES dist:

ey o
Z; = : instead of z; = 7; :
G :EE"L) :rl(-m)
where all the quantity are independent (means # random
amplitude on the different sensors).
m Improvement on MSE is valid for the MUSIC statistic estimate
and NOT for the DoA estimate.
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Robust RMT under CES distributions

m Previous results remain valid under CES distributions, i.e. where 7;
are r.va. with unknown PDF (M-estimators, (Couillet, 2015)).

Technical condition: For each @ > b > 0, one has
. limsupy vn([t,00))
lim

t—o00 (;S(at) — ¢(bt)

o(t) = tou(t).

— 0. where vy = %21]11 Jr, and

Meaning: one has to control the queue of the dist. of 7.

m Also valid for Tyler's estimator (Zhang, 2016): ¢(t) = m,Vt > 0.
More tight condition but same idea for the proof.
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Robust RMT under CES distributions

Results on the eigenvalues distributions of the M-estimators for CES
R. Couillet, F. Pascal, and J. W. Silverstein, “The Random Matrix Regime
of Maronna's M-estimator with elliptically distributed samples”, JMVA,
vol. 139, 2015.

Ideas of the proofs? Break and discusssions.

Results on the eigenvalues distributions of the Tyler's estimator for
CES

T. Zhang, X. Cheng, and A. Singer, “Marchenko-Pastur Law for Tyler's
and Maronna's M-estimators”, arXiv preprint arXiv:1401.3424, 2016.
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Robust RMT under CES distributions

Density

Density

Eigenvalues

(a) SCM (b) Student M-estimator

Histogram of the eigenvalues of the SCM and a M-estimator against the
limiting spectral measure, with 2 sources, p; = ps =1,
m = 200, N = 1000, Student-t distributions

Random Matrix Theory Applications to DoA estimation E. Ollila & F. Pascal

39 / 67



10!

MSE on the DoA estimation

10°

Angle MSE

[|----MusIC

Robust MUSIC

| - - G-music
F{ —2— Robust G-MUSIC

0

SNR [dB]

(c) Gaussian

Angle MSE

10t

Robust RMT under CES distributions

N
\\
100 | \ g
£ \
N
\ N
\
4\\ \
107! | B i
[ 5 \\
I \
[|----Music A\A\\
H Robust MUSIC ON
10-2 | - -G-MUsic .
F{ —&— Robust G-MUSIC L3
C T Il
-5 0 10 15

SNR [dB]

(d) K-dist (v = 1, homogeneous)

MSE vs SNR of the DoA estimation in the case of 2 sources (¢; = 14° and
02 = 18°), for Gaussian noise and K-distributed noise, where N = 100 and

m = 20.
Random Matrix Theory Applications to DoA estimation
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Robust

Angle MSE

RMT under CES distributions

MSE on the DoA estimation

1072

H----Music
H Robust MUSIC
[]-4&-G-MUsIC
107% | _a— Robust G-MUSIC
C T | |
-5 0 5 10
SNR [dB]

K-dist (v = 0.11, heterogeneous)

MSE vs SNR of the DoA estimation in the case of 2 sources (#; = 14° and
02 = 18°), for Gaussian noise and K-distributed noise, where N = 100 and

m = 20. Interest on sources resolution

E. Ollila & F. Pascal
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Robust RMT under CES distributions

T
X ----MUSIC
Robust MUSIC
-4~ G-MUSIC

—&— Robust G-MUSIC

10“1

10—t

Angle MSE

1072

| | | I
50 100 150 200 250 300

n

MSE vs the ration m/N of the DoA estimation in the case of 2 sources
(61 = 14° and 6, = 18°), for homogeneous K-distributed noise, where
SNR =10dB and m = 20.
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IV. Regularized M-estimators and link to RMT
m Motivations and definitions
m Optimization and detection



Motivations

Some advantages

m Regularized problem (cf. part A), with norm penalties (e.g. for
sparsity)

m Combined with M-estimators = robustness to outliers

m May allow to include a priori informations

m Case of small number of observations or under-sampling N < m:
matrix is not invertible = Problem when using M -estimators or
Tyler's estimator!

It is an active research on this topic:
see the works of Yuri Abramovich, Olivier Besson, Romain Couillet,
Mathew McKay, Ami Wiesel...
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Regularized Tyler’s estimators (RTE)

Chen estimator

So(p)=(1-p —— + ol
N;ZHE(J( )z

subject to the constraint Tr(E¢(p)) = m and for p € (0, 1].

m Originally introduced in (Abramovich, 2007)

m Existence, uniqueness and algorithm convergence proved in (Chen,
2011)

Y. Chen, A. Wiesel, and A. O. Hero, "Robust shrinkage estimation of

high-dimensional covariance matrices,” Signal Processing, IEEE Transactions on,
vol. 59, no. 9, pp. 4097-4107, 2011.

Remark: Constraint Tr(E2¢(p)) = m has two interests:
m Allowing p to live in [0, 1]
m Making the prove easier
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Regularized Tyler’s estimators

Pascal estimator

N H
e m Z,Z;
p(p)=1-p) NZ o1 T al
i=1 2; Xp (p)zi

subject to the no trace constraint but for p € (p, 1], where
p :=max(0,1 — N/m).

m Existence, uniqueness and algorithm convergence proved in (Pascal,
2013)

F. Pascal, Y. Chitour, and Y. Quek, " Generalized robust shrinkage estimator and its
application to STAP detection problem,” Signal Processing, IEEE Transactions on,
vol. 62, pp. 5640-5651, Nov. 2014.

. f]p(p) (naturally) verifies Tr(f]]:1 (p)) =m for all p € (0,1]
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Regularized Tyler’s estimators

The main challenge is to find the optimal p!
According to the applications...MSE, detection performances...

One (theoretical) answer is given thanks to RMT in ...
R. Couillet and M. R. McKay, " Large Dimensional Analysis and Optimization of Robust
Shrinkage Covariance Matrix Estimators,” Journal of Multivariate Analysis, vol. 131, pp.

99-120, 2014
where it is also proved that
m Both estimators have asymptotically (RMT regime) the same
performance (achieved for a different value of beta)

m They asymptotically perform as a normalized version of the
Ledoit-Wolf estimator (similar to previous results).

O. Ledoit and M. Wolf, " A well-conditioned estimator for large-dimensional covariance
matrices,” Journal of multivariate analysis , vol. 88, no. 2, pp. 365-411, 2004.
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Regularized Tyler’s estimators

Objective: Robust estimate of M = E|[z;z!], for zy,...,zy € C™ i.i.d.
with

mzZ= \/ﬁMl/Qxi, x; has i.i.d. entries, F[x;] =0, E[XiXZH] =1

m 7; > 0 random impulsions with E[r;] = 1.

m m fixed and N — oo (Classical asymptotics!)
OR

z; = \/FiMlﬂxi, x; has i.i.d. entries, E[x;] =0, E[x;x] =1
7; > 0 random impulsions with E[r;] = 1.

cmé%%casm,N%oo

few data: m ~ V.

Find “optimal” regularized parameter!

Regularized M-estimators and link to RMT Optimization and detection E. Ollila & F. Pascal 47 / 67



RTE Asymptotics

Assumptions: m fixed and N — +o0

Let us set
So(p) =m (1— B |- | o
olp) =m(1—p p
2155 (p)z
for p € (p, 1], where p := max(0,1 — N/m).
Then, for any k > 0, one has
5up HEP Eo(p)‘ — 50

pE[k,1] m fixed ,N—o00

Remark: Of course, 3¢ (p) # M!!l What is ¥y(p)? ... it can be shown
that they share the same eigenvectors space.
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RTE Asymptotics

Characterization of 3 (p)

Let us first denote 3 = Xo(p).
m Multiplying by M~1/2, one obtains:

XXH

+pM1

M Y25, M~ Y2 =m((1-pE [

xHM1/2 551 M1/2x

m Let the eigenvalue decomposition of M—1/2 3 M~1/2 = VDVH,

XXH H
m Then, m(1—p)E | ——| +pVEIM~IV=D"!
xHDx

H

Bl
—

xHDx
eigenvector space.

Lemma If D = diag(di,...,dm), then a; are given by

dm —1/2

g

1 1 di —1/2
:TTFém) (m,l,...,2717__.71,m+1, - /
2mm 7L, d; d1

where Fém) is the Lauricella’s type D hypergeometric function.
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RTE Asymptotics

Characterization of 3 (p)

2
m Denote by a;({d;}]L,) = E[ = ] Then

xHDx

P 1
—Da;({d;i }i2 =k
m(m — Dai({di}iy) + £ = &

where ); are the eigenvalues of £p(p): Sp(p) = VAVH with A = diag(A1,..., Am)
and )\1 2)\2 Z}\m

m Start from dgo), cee dﬁg) and compute iteratively

4D _ 1
* )\% +m(1 — m)a;(diag(d®))

until convergence. If d1,o0,...,dm,cc are the obtained values, then...
m Set Si00 = Ai di,oo. Then,

¥ = Vdiag(s1,00,- -, sm,oo)VH.
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RTE Asymptotics

Assumptions: m fixed and N — +o0

Similarly to M-estimators, one can establish a CLT:
Theorem 1 (Asymptotic distribution of $p(p))

VN vec(Ep(p) — Zo(p)) - CA (0, M1, M), (8)

where CA is the complex Gaussian distribution, M; the CM and M, the
pseudo CM.
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RMT Asymptotic Behavior
Theorem (Asymptotic Behavior (Couillet-McKay, 2014))
For ¢ € (0,min{1,c'}), define R. = [¢ + max{0,1 — ¢ 1},1].
Then, as m, N — oo, m/N — ¢ € (0, 00),

sup Hf)p(p) — gm(p)‘
PER:

with

and v(p) unique positive solution to equation

1

1= —Tr (M (0y(p)T+ (1 — p)M)_l) :

Moreover, p — ~(p) continuous on (0, 1].

v
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Asymptotic Model Equivalence

Theorem (Model Equivalence (Couillet-McKay, 2014))

For each p € (0, 1], there exist unique p € (max{0,1 — c¢~'},1] such that

Sim(p) 1SN 1 wn gL

L 1p
1@ T-(-pe TP i=1

Besides, (0,1] — (max{0,1 —c¢~'},1], p— p is increasing and onto.

m Estimator behaves similar to impulsion-free Ledoit-Wolf estimator

m About uniformity: Uniformity over p essential to find optimal values
of p.

(] §m is unobservable!
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Context
Hypothesis testing: Two sets of data

m Initial pure-noise data: z1,...,2yN, 2, = /Tn M1/2xn as before.

[
Hypothesis Hy: y =z Yn=2, n=1...,N
Hypothesis H;: y=s+2z y,=2, n=1,...,N

with z = \/FMl/zx, s =ap, p € C™ deterministic known, «
unknown.

GLRT detection test:

Hi
Tm(p) s T

Ho

for some detection threshold I" where
ga-l
>
Tm([)) A A‘i}; P (p)plil )
\/yHEP (p)y\/pHEP (P)p
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Context

Originally found to be £ p(0) but
m only valid form < N
m p > 0 can only bring improvements.

Basic comments:
m ForT' >0, asm,N — oo, m/N — ¢ >0, under Hy,
Tn(p) == 0.
= Zero false alarm, trivial result.

m Non-trivial solutions for ' = v/y/m, 7 > 0 fixed.
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Objectives

Objective: For finite but large m, N, solve

p* = argmin, { P (vVmTm(p) >7)}.

Several steps:
m for each p, central limit theorem to evaluate

lim P (vVimTo(p) > )

m,N—oc0
m/N—c

(very involved due to intricate structure of S p)
m find minimizing p

m estimate minimizing p
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Main results
Theorem (Asymptotic detector performance (Couillet-Pascal, 2015))

As m, N — oo with m/N — ¢ € (0,00),
2

(o) -on ()|

sup
pERn

with p — p aforementioned mapping and
p"MQ; (p)p
HQm( )p m TI’ (MQm( )) : (1 - C(l - /_))2f(

2 a
om(p) = —/_))2% Tr (M2 )

Ml'—‘

with Qm(p) £ (I+ (1 — p)f(—p)M)~. J

m Limiting Rayleigh distribution (weak convergence to Rayleigh R;,(p))
m Remark: o, and p not function of v
= There exists uniformly optimal p.
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Simulation
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Figure: Histogram distribution function of the \/mT;,(p) versus Ry,(p), m = 20,
N =40p=m"z[1,...,1]7, M Toeplitz from AR of order 0.7, p = 0.2.
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Simulation
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Figure: Histogram distribution function of the v/NT},(p) versus Ry, (p), m = 100,
N =200 p=m-2[1,...,1]7, M Toeplitz from AR of order 0.7, p = 0.2.

Regularized M -estimators and link to RMT Optimization and detection E. Ollila & F. Pascal 59 / 67



Empirical estimation of optimal p
Optimal p depends on unknown M. We need:
m empirical estimate ,,(p)
® minimize the estimate
m prove asymptotic optimality of estimate.

Theorem (Empirical performance estimation (Couillet-Pascal, 2015))

For p € (max{0,1 —c;;'},1), let

1- . pH%;}j(p)p
G2 (p) 2 1 p?Ep (p)p
e 2(1—cm+emp)(L—p)

Also let 62,(1) £ limy1 62,(p).
Then -
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Final result

Theorem (Optimality of empirical estimator (Couillet-Pascal, 2015))
Define

B:n = argmin{pef,%} {&%(2)} .

Then, for every v > 0,

P (VinT(gy,) > ) = inf {P (VnTn(p) > )} = 0.
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Simulations
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Figure: False alarm rate P(T,,(p) > T') for m = 20 and m = 100,
p=m"z[1,..., 17, My; = 0.7, ¢,, = 1/2.
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Analogous results can be obtained under H; (more useful!).

A. Kammoun, R. Couillet, F. Pascal, and M.-S. Alouini, “Optimal Design of the
Adaptive Normalized Matched Filter Detector,” Information Theory, IEEE
Transactions on (submitted to), 2016. arXiv:1501.06027
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Figure: ROC curves for non-Gaussian clutters when m = 250 (STAP application
N, =10, N, = 25), N = 250, f; =0.6
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V. Conclusions and perspectives



Conclusions and Perspectives

m Conclusions

m Derivation of the complex M-estimators asymptotic distribution,
the robust ANMF and the MUSIC statistic asymptotic
distributions.

m In the Gaussian case, M-estimators built with 01N data behaves
as SCM built with N data (i.e. slight loss of performance in
Gaussian case).

m Better estimation in non-Gaussian cases.

m Extension to the Robust RMT and derivation of the Robust
G-MUSIC method.

m Shrinkage M-estimators: one more degree of freedom (for Big
data problems, robust methods...)
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Conclusions and Perspectives

m Perspectives
m Low Rank techniques for robust estimation

m Robust estimation with a location parameter (non-zero-mean
observation): e.g. Hyperspectral imaging

m Second-order moment in RMT

Asymptotics for regularized robust estimators

m RMT analysis for regularized robust estimators
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Thank you for your attention!

Questions?
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